ترغب بنشر مسار تعليمي؟ اضغط هنا

Dissecting Jets and Missing Energy Searches Using $n$-body Extended Simplified Models

125   0   0.0 ( 0 )
 نشر من قبل Timothy Cohen
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Simplified Models are a useful way to characterize new physics scenarios for the LHC. Particle decays are often represented using non-renormalizable operators that involve the minimal number of fields required by symmetries. Generalizing to a wider class of decay operators allows one to model a variety of final states. This approach, which we dub the $n$-body extension of Simplified Models, provides a unifying treatment of the signal phase space resulting from a variety of signals. In this paper, we present the first application of this framework in the context of multijet plus missing energy searches. The main result of this work is a global performance study with the goal of identifying which set of observables yields the best discriminating power against the largest Standard Model backgrounds for a wide range of signal jet multiplicities. Our analysis compares combinations of one, two and three variables, placing emphasis on the enhanced sensitivity gain resulting from non-trivial correlations. Utilizing boosted decision trees, we compare and classify the performance of missing energy, energy scale and energy structure observables. We demonstrate that including an observable from each of these three classes is required to achieve optimal performance. This work additionally serves to establish the utility of $n$-body extended Simplified Models as a diagnostic for unpacking the relative merits of different search strategies, thereby motivating their application to new physics signatures beyond jets and missing energy.



قيم البحث

اقرأ أيضاً

The study of collision events with missing energy as searches for the dark matter (DM) component of the Universe are an essential part of the extensive program looking for new physics at the LHC. Given the unknown nature of DM, the interpretation of such searches should be made broad and inclusive. This report reviews the usage of simplified models in the interpretation of missing energy searches. We begin with a brief discussion of the utility and limitation of the effective field theory approach to this problem. The bulk of the report is then devoted to several different simplified models and their signatures, including s-channel and t-channel processes. A common feature of simplified models for DM is the presence of additional particles that mediate the interactions between the Standard Model and the particle that makes up DM. We consider these in detail and emphasize the importance of their inclusion as final states in any coherent interpretation. We also review some of the experimental progress in the field, new signatures, and other aspects of the searches themselves. We conclude with comments and recommendations regarding the use of simplified models in Run-II of the LHC.
This document summarises the proposal of the LHC Dark Matter Working Group on how to present LHC results on $s$-channel simplified dark matter models and to compare them to direct (indirect) detection experiments.
149 - Bogdan A. Dobrescu 2015
Color-singlet gauge bosons with renormalizable couplings to quarks but not to leptons must interact with additional fermions (anomalons) required to cancel the gauge anomalies. Analyzing the decays of such leptophobic bosons into anomalons, I show th at they produce final states involving leptons at the LHC. Resonant production of a flavor-universal leptophobic $Z$ boson leads to cascade decays via anomalons, whose signatures include a leptonically decaying $Z$, missing energy and several jets. A $Z$ boson that couples to the right-handed quarks of the first and second generations undergoes cascade decays that violate lepton universality and include signals with two leptons and jets, or with a Higgs boson, a lepton, a $W$ and missing energy.
Hidden sectors could give rise to a wide variety of events at the LHC. Confining hidden sectors are known to engender events with a small number of jets when they are weakly-coupled at high energies, and quasi-spherical soft unclustered energy patter ns (SUEPs) when they are very strongly-coupled (large t Hooft coupling) at high energies. The intermediate regime is murky, and could give rise to signals hiding from existing search strategies. While the intermediate coupling regime is not calculable, it is possible to pursue a phenomenological approach in which one creates signals that are intermediate between spherical and jetty. We propose a strategy for generating events of this type using simplified models in extra dimensions. The degree to which the event looks spherical is related to the number of decays produced near kinematic threshold. We provide an analytic understanding of how this is determined by parameters of the model. To quantify the shape of events produced with this model, we use a recently proposed observable---event isotropy---which is a better probe of the spherical regime than earlier event shape observables.
We show that the signature of two boosted $W$-jets plus large missing energy is very promising to probe heavy charged resonances ($X^pm$) through the process of $ppto X^+X^-to W^+W^- X^0 X^0$ where $X^0$ denotes dark matter candidate. The hadronic de cay mode of the $W$ boson is considered to maximize the number of signal events. When the mass split between $X^pm$ and $X^0$ is large, one has to utilize the jet-substructure technique to analyze the boosted $W$-jet. For illustration we consider the process of chargino pair production at the LHC, i.e., $ppto chi_1^+chi^-_1 to W^+W^-chi_1^0chi_1^0$, and demonstrate that the proposed signature is able to cover more parameter space of $m_{chi_1^pm}$ and $m_{chi_1^0}$ than the conventional signature of multiple leptons plus missing energy. More importantly, the signature of our interests is not sensitive to the spin of heavy resonances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا