ﻻ يوجد ملخص باللغة العربية
We study a finite system of diffusions on the half-line, absorbed when they hit zero, with a correlation effect that is controlled by the proportion of the processes that have been absorbed. As the number of processes in the system becomes large, the empirical measure of the population converges to the solution of a non-linear stochastic heat equation with Dirichlet boundary condition. The diffusion coefficients are allowed to have finitely many discontinuities (piecewise Lipschitz) and we prove pathwise uniqueness of solutions to the limiting stochastic PDE. As a corollary we obtain a representation of the limit as the unique solution to a stochastic McKean--Vlasov problem. Our techniques involve energy estimation in the dual of the first Sobolev space, which connects the regularity of solutions to their boundary behaviour, and tightness calculations in the Skorokhod M1 topology defined for distribution-valued processes, which exploits the monotonicity of the loss process $L$. The motivation for this model comes from the analysis of large portfolio credit problems in finance.
In this paper we consider a class of {it conditional McKean-Vlasov SDEs} (CMVSDE for short). Such an SDE can be considered as an extended version of McKean-Vlasov SDEs with common noises, as well as the general version of the so-called {it conditiona
We consider $mathbb{R}^d$-valued diffusion processes of type begin{align*} dX_t = b(X_t)dt, +, dB_t. end{align*} Assuming a geometric drift condition, we establish contractions of the transitions kernels in Kantorovich ($L^1$ Wasserstein) dista
In this paper, the strong existence and uniqueness for a degenerate finite system of quantile-dependent McKean-Vlasov stochastic differential equations are obtained under a weak H{o}rmander condition. The approach relies on the apriori bounds for the
This paper is devoted to investigating the Freidlin-Wentzells large deviation principle for a class of McKean-Vlasov quasilinear SPDEs perturbed by small multiplicative noise. We adopt the variational framework and the modified weak convergence crite
We study a class of non linear integro-differential equations on the Wasserstein space related to the optimal control of McKean--Vlasov jump-diffusions. We develop an intrinsic notion of viscosity solutions that does not rely on the lifting to an Hil