ﻻ يوجد ملخص باللغة العربية
We consider a network of sellers, each selling a single product, where the graph structure represents pair-wise complementarities between products. We study how the network structure affects revenue and social welfare of equilibria of the pricing game between the sellers. We prove positive and negative results, both of Price of Anarchy and of Price of Stability type, for special families of graphs (paths, cycles) as well as more general ones (trees, graphs). We describe best-reply dynamics that converge to non-trivial equilibrium in several families of graphs, and we use these dynamics to prove the existence of approximately-efficient equilibria.
We consider a revenue-maximizing seller with $m$ heterogeneous items and a single buyer whose valuation $v$ for the items may exhibit both substitutes (i.e., for some $S, T$, $v(S cup T) < v(S) + v(T)$) and complements (i.e., for some $S, T$, $v(S cu
Let $Omega$ be the complement of a connected, essential hyperplane arrangement. We prove that every dominant endomorphism of $Omega$ extends to an endomorphism of the tropical compactification $X$ of $Omega$ associated to the Bergman fan structure on
Hempel has shown that the fundamental groups of knot complements are residually finite. This implies that every nontrivial knot must have a finite-sheeted, noncyclic cover. We give an explicit bound, $Phi (c)$, such that if $K$ is a nontrivial knot i
Supply chains are the backbone of the global economy. Disruptions to them can be costly. Centrally managed supply chains invest in ensuring their resilience. Decentralized supply chains, however, must rely upon the self-interest of their individual c
We consider dynamic equilibria for flows over time under the fluid queuing model. In this model, queues on the links of a network take care of flow propagation. Flow enters the network at a single source and leaves at a single sink. In a dynamic equi