ﻻ يوجد ملخص باللغة العربية
We examine the exact equation of motion for the relaxation of populations of strongly correlated electrons after a nonequilibrium excitation by a pulsed field, and prove that the populations do not change when the Greens functions have no average time dependence. We show how the average time dependence enters into the equation of motion to lowest order and describe what governs the relaxation process of the electron populations in the long-time limit. While this result may appear, on the surface, to be required by any steady-state solution, the proof is nontrivial, and provides new critical insight into how nonequilibrium populations relax, which goes beyond the assumption that they thermalize via a simple relaxation rate determined by the imaginary part of the self-energy, or that they can be described by a quasi-equilibrium condition with a Fermi-Dirac distribution and a time-dependent temperature. We also discuss the implications of this result to approximate theories, which may not satisfy the exact relation in the equation of motion.
We study the role of excited phonon populations in the relaxation rates of nonequilibrium electrons using a nonequilibrium Greens function formalism. The transient modifications in the phononic properties are accounted for by self-consistently solvin
We give a brief summary of the current status of the electron many-body problem in graphene. We claim that graphene has intrinsic dielectric properties which should dress the interactions among the quasiparticles, and may explain why the observation
Do electrons become ferromagnetic just because of their repulisve Coulomb interaction? Our calculations on the three-dimensional electron gas imply that itinerant ferromagnetim of delocalized electrons without lattice and band structure, the most bas
We present here the details of a method [A. B. Culver and N. Andrei, Phys. Rev. B 103, L201103 (2021)] for calculating the time-dependent many-body wavefunction that follows a local quench. We apply the method to the voltage-driven nonequilibrium Kon
We theoretically investigate the effects of the lattice geometry on the nonequilibrium dynamics of photo-excited carriers in a half-filled two-dimensional Hubbard model. Using a nonequilibrium generalization of the dynamical cluster approximation, we