ﻻ يوجد ملخص باللغة العربية
We consider a realistic bosonic N-particle model with unitary interactions relevant for Efimov physics. Using quantum Monte Carlo methods, we find that the critical temperature for Bose-Einstein condensation is decreased with respect to the ideal Bose gas. We also determine the full momentum distribution of the gas, including its universal asymptotic behavior, and compare this crucial observable to recent experimental data. Similar to the experiments with different atomic species, differentiated solely by a three-body length scale, our model only depends on a single parameter. We establish a weak influence of this parameter on physical observables. In current experiments, the thermodynamic instability of our model from the atomic gas towards an Efimov liquid could be masked by the dynamical instability due to three-body losses.
Using Boltzmanns equation, we study the effect of three-body losses on the momentum distribution of a homogeneous unitary Bose gas in the dilute limit where quantum correlations are negligible. We calculate the momentum distribution of the gas and sh
We study the dilute and ultracold unitary Bose gas, which is characterized by a universal equation of state due to the diverging s-wave scattering length, under a transverse harmonic confinement. From the hydrodynamic equations of superfluids we deri
We study the stability of a thermal $^{39}$K Bose gas across a broad Feshbach resonance, focusing on the unitary regime, where the scattering length $a$ exceeds the thermal wavelength $lambda$. We measure the general scaling laws relating the particl
The low temperature unitary Bose gas is a fundamental paradigm in few-body and many-body physics, attracting wide theoretical and experimental interest. Here we first present a theoretical model that describes the dynamic competition between two-body
In many-body systems governed by pairwise contact interactions, a wide range of observables is linked by a single parameter, the two-body contact, which quantifies two-particle correlations. This profound insight has transformed our understanding of