ترغب بنشر مسار تعليمي؟ اضغط هنا

$W^{pm}Z$ production at hadron colliders in NNLO QCD

79   0   0.0 ( 0 )
 نشر من قبل Stefan Kallweit
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the first computation of the next-to-next-to-leading order (NNLO) QCD corrections to $W^{pm}Z$ production in proton collisions. We consider both the inclusive production of on-shell $W^{pm}Z$ pairs at LHC energies and the total $W^{pm}Z$ rates including off-shell effects of the $W$ and $Z$ bosons. In the off-shell computation, the invariant mass of the lepton pairs from the $Z$ boson decay is required to be in a given mass window, and the results are compared with the corresponding measurements obtained by the ATLAS and CMS collaborations. The NNLO corrections range from 8% at $sqrt{s}$=7 TeV to 11% at $sqrt{s}$=14 TeV and significantly improve the agreement with the LHC data at $sqrt{s}$=7 and 8 TeV.

قيم البحث

اقرأ أيضاً

We present next-to-next-to-leading-order (NNLO) QCD corrections to the production of three isolated photons in hadronic collisions at the fully differential level. We employ qT subtraction within MATRIX and an efficient implementation of analytic two -loop amplitudes in the leading-colour approximation to achieve the first on-the-fly calculation for this process at NNLO accuracy. Numerical results are presented for proton-proton collisions at energies ranging from 7 TeV to 100 TeV. We find full agreement with the 8 TeV results of arXiv:1911.00479 and confirm that NNLO corrections are indispensable to describe ATLAS 8 TeV data. In addition, we demonstrate the significance of NNLO corrections for future precision studies of triphoton production at higher collision energies.
A general review of the latest results about single and double vector boson production in the multipurpose experiments at LHC (ATLAS and CMS) and at Tevatron (CDF and D0) will be presented. The review will focus on boson production, while a more deta iled report about W and Z properties can be found elsewhere. Only leptonic decays into electrons and muons will be considered.
In LHC searches for new and rare phenomena the top-associated channel $pp to toverline{t}W^pm +X$ is a challenging background that multilepton analyses must overcome. Motivated by sustained measurements of enhanced rates of same-sign and multi-lepton final states, we reexamine the importance of higher jet multiplicities in $pp to toverline{t}W^pm +X$ that enter at $mathcal{O}(alpha_s^3alpha)$ and $mathcal{O}(alpha_s^4alpha)$, i.e., that contribute at NLO and NNLO in QCD in inclusive $toverline{t}W^pm$ production. Using fixed-order computations, we estimate that a mixture of real and virtual corrections at $mathcal{O}(alpha_s^4alpha)$ in well-defined regions of phase space can arguably increase the total $toverline{t}W^pm$ rate at NLO by at least $10%-14%$. However, by using non-unitary NLO multi-jet matching, we estimate that these same corrections are at most $10%-12%$, and at the same time exhibit the enhanced jet multiplicities that are slightly favored by data. This seeming incongruity suggests a need for the full NNLO result. We comment on implications for the $toverline{t}Z$ process.
We present a complete 1-loop study of the electroweak corrections to the process $ugto dW^+$ in MSSM and SM. The occurrence of a number of remarkable properties in the behavior of the helicity amplitudes at high energies is stressed, and the crucia l role of the virtual SUSY contributions in establishing them, is emphasized. The approach to asymptopia of these amplitudes is discussed, comparing the effects of the logarithmic and constant contributions to the mass suppressed ones, which are relevant at lower energies. Applying crossing to $ugto d W^+$, we obtain all subprocesses needed for the 1-loop electroweak corrections to $W^pm$-production at LHC. The SUSY model dependence of such a production is then studied, and illustrations are given for the transverse $W^{pm}$ momentum distribution, as well as the angular distribution in the subprocess center of mass.
193 - C. Bernaciak , D. Wackeroth 2012
The precision measurement of the mass of the $W$ boson is an important goal of the Fermilab Tevatron and the CERN Large Hadron Collider (LHC). It requires accurate theoretical calculations which incorporate both higher-order QCD and electroweak corre ctions, and also provide an interface to parton-shower Monte Carlo programs which make it possible to realistically simulate experimental data. In this paper, we present a combination of the full ${cal O}(alpha)$ electroweak corrections of {tt WGRAD2}, and the next-to-leading order QCD radiative corrections to $Wtoell u$ production in hadronic collisions in a single event generator based on the {tt POWHEG} framework, which is able to interface with the parton-shower Monte Carlo programs {tt Pythia} and {tt Herwig}. Using this new combined QCD+EW Monte Carlo program for $W$ production we provide numerical results for total cross sections and kinematic distributions of relevance to the $W$ mass measurement at the Tevatron and the LHC for the processes $pp,pbar p to W^pm to mu^pm u_mu$. In particular, we discuss the impact of EW corrections in the presence of QCD effects when including detector resolution effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا