ترغب بنشر مسار تعليمي؟ اضغط هنا

On the equivalence between $Theta_{n}$-spaces and iterated Segal spaces

78   0   0.0 ( 0 )
 نشر من قبل Rune Haugseng
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف Rune Haugseng




اسأل ChatGPT حول البحث

We give a new proof of the equivalence between two of the main models for $(infty,n)$-categories, namely the $n$-fold Segal spaces of Barwick and the $Theta_{n}$-spaces of Rezk, by proving that these are algebras for the same monad on the $infty$-category of $n$-globular spaces. The proof works for a broad class of $infty$-categories that includes all $infty$-topoi.



قيم البحث

اقرأ أيضاً

103 - Rune Haugseng 2019
We show that Segal spaces, and more generally category objects in an $infty$-category $mathcal{C}$, can be identified with associative algebras in the double $infty$-category of spans in $mathcal{C}$. We use this observation to prove that having iden tities is a property of a non-unital $(infty,n)$-category.
We prove that the set of concordance classes of sections of an infinity-sheaf on a manifold is representable, extending a theorem of Madsen and Weiss. This is reminiscent of an h-principle in which the role of isotopy is played by concordance. As an application, we offer an answer to the question: what does the classifying space of a Segal space classify?
It is known by results of Dyckerhoff-Kapranov and of Galvez--Carrillo-Kock-Tonks that the output of the Waldhausen S.-construction has a unital 2-Segal structure. Here, we prove that a certain S.-functor defines an equivalence between the category of augmented stable double categories and the category of unital 2-Segal sets. The inverse equivalence is described explicitly by a path construction. We illustrate the equivalence for the known examples of partial monoids, cobordism categories with genus constraints and graph coalgebras.
In a previous paper, we showed that a discrete version of the $S_bullet$-construction gives an equivalence of categories between unital 2-Segal sets and augmented stable double categories. Here, we generalize this result to the homotopical setting, b y showing that there is a Quillen equivalence between a model category for unital 2-Segal objects and a model category for augmented stable double Segal objects which is given by an $S_bullet$-construction. We show that this equivalence fits together with the result in the discrete case and briefly discuss how it encompasses other known $S_bullet$-constructions.
Magnitude is a numerical invariant of enriched categories, including in particular metric spaces as $[0,infty)$-enriched categories. We show that in many cases magnitude can be categorified to a homology theory for enriched categories, which we call magnitude homology (in fact, it is a special sort of Hochschild homology), whose graded Euler characteristic is the magnitude. Magnitude homology of metric spaces generalizes the Hepworth--Willerton magnitude homology of graphs, and detects geometric information such as convexity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا