ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological Semimetals with Triply Degenerate Nodal Points in theta-phase Tantalum Nitride

136   0   0.0 ( 0 )
 نشر من قبل Hongming Weng
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using first-principles calculation and symmetry analysis, we propose that theta-TaN is a topological semimetal having a new type of point nodes, i.e., triply degenerate nodal points. Each node is a band crossing between degenerate and non-degenerate bands along the high-symmetry line in the Brillouin zone, and is protected by crystalline symmetries. Such new type of nodes will always generate singular touching points between different Fermi surfaces and 3D spin texture around them. Breaking the crystalline symmetry by external magnetic field or strain leads to various of topological phases. By studying the Landau levels under a small field along $c$-axis, we demonstrate that the system has a new quantum anomaly that we call helical anomaly.

قيم البحث

اقرأ أيضاً

Triply degenerate points (TDPs) in band structure of a crystal can generate novel TDP fermions without high-energy counterparts. Although identifying ideal TDP semimetals, which host clean TDP fermions around the Fermi level ($E_F$) without coexistin g of other quasiparticles, is critical to explore the intrinsic properties of this new fermion, it is still a big challenge and has not been achieved up to now. Here, we disclose an effective approach to search for ideal TDP semimetals via selective band crossing between antibonding $s$ and bonding $p$ orbitals along a line in the momentum space with $C_{3v}$ symmetry. Applying this approach, we have successfully identified the NaCu$_3$Te$_2$ family of compounds to be ideal TDP semimetals, where two and only two pairs of TDPs are located around the $E_F$. Moreover, we reveal an interesting mechanism to modulate energy splitting between a pair of TDPs, and illustrate the intrinsic features of TDP Fermi arcs in these ideal TDP semimetals.
As a new type of fermions without counterpart in high energy physics, triply degenerate fermions show exotic physical properties, which are represented by triply degenerate nodal points in topological semimetals. Here, based on the space group theory analysis, we propose a practical guidance for seeking a topological semimetal with triply degenerate nodal points located at a symmetric axis, which is applicable to both symmorphic and nonsymmorphic crystals. By using this guidance in combination with the first-principles electronic structure calculations, we predict a class of triply degenerate topological semimetals RERh$_{6}$Ge$_{4}$ (RE=Y, La, Lu). In these compounds, the triply degenerate nodal points are located at the $Gamma$-A axis and not far from the Fermi level. Especially, LaRh$_{6}$Ge$_{4}$ has a pair of triply degenerate nodal points located very closely to the Fermi level. Considering the fact that the single crystals of RERh$_{6}$Ge$_{4}$ have been synthesized experimentally, the RERh$_{6}$Ge$_{4}$ class of compounds will be an appropriate platform for studying exotic physical properties of triply degenerate topological semimetals.
By using first-principles calculations, we propose that WC-type ZrTe is a new type of topological semimetal (TSM). It has six pairs of chiral Weyl nodes in its first Brillouin zone, but it is distinguished from other existing TSMs by having additiona l two paris of massless fermions with triply degenerate nodal points as proposed in the isostructural compounds TaN and NbN. The mirror symmetry, three-fold rotational symmetry and time-reversal symmetry require all of the Weyl nodes to have the same velocity vectors and locate at the same energy level. The Fermi arcs on different surfaces are shown, which may be measured by future experiments. It demonstrates that the material universe can support more intriguing particles simultaneously.
Based on the first-principles study, we report a new set of topological semimetals (TiS, TiSe, TiTe, HfS, HfSe, HfTe and ZrS) which show the co-existence of a nodal-ring and triply-degenerate points. The two-fold degenerate one-dimensional nodal ring structure in the bulk Brillouin zone exhibits the characteristic drumhead surface states. In addition to this, a peculiar band crossing along the $k_z$ direction takes place consisting of a point-crossing with three-fold band degeneracy. These triply-degenerate points give rise to nexus fermions as quasiparticles having no analogous elementary particle of the standard model. In this article, we simulate angle-resolved photoemission spectroscopy to obtain the exotic topological surface states and the characteristic Fermi arcs, and explain the evolution and separation of triple-points with the magnitude of spin-orbit coupling. This intermediate linearly dispersive degeneracy between Weyl and Dirac points may offer prospective candidates for quantum transport applications.
90 - Zhifeng Liu , Hongli Xin , Li Fu 2018
Owing to the natural compatibility with current semiconductor industry, silicon allotropes with diverse structural and electronic properties provide promising platforms for the next-generation Si-based devices. After screening 230 all-silicon crystal s in the zeolite frameworks by first-principles calculations, we disclose two structurally stable Si allotropes (AHT-Si24 and VFI-Si36) containing open channels as topological node-line semimetals with Dirac nodal points forming a nodal loop in the kz=0 plane of Brillouin zone. Interestingly, their nodal loops protected by inversion and time-reversal symmetries are robust against SU(2) symmetry breaking due to very weak spin-orbit coupling of Si. When the nodal lines are projected onto the (001) surface, flat surface bands can be observed because of the nontrivial topology of the bulk band structures. Our discoveries extend the topological physics to the three-dimensional Si materials, highlighting the possibility to realize low-cost, nontoxic and semiconductor-compatible Si-based electronics with topological quantum states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا