ﻻ يوجد ملخص باللغة العربية
A considerable fraction of the massive quiescent galaxies at emph{z} $approx$ 2, which are known to be much more compact than galaxies of comparable mass today, appear to have a disk. How well can we measure the bulge and disk properties of these systems? We simulate two-component model galaxies in order to systematically quantify the effects of non-homology in structures and the methods employed. We employ empirical scaling relations to produce realistic-looking local galaxies with a uniform and wide range of bulge-to-total ratios ($B/T$), and then rescale them to mimic the signal-to-noise ratios and sizes of observed galaxies at emph{z} $approx$ 2. This provides the most complete set of simulations to date for which we can examine the robustness of two-component decomposition of compact disk galaxies at different $B/T$. We confirm that the size of these massive, compact galaxies can be measured robustly using a single S{e}rsic fit. We can measure $B/T$ accurately without imposing any constraints on the light profile shape of the bulge, but, due to the small angular sizes of bulges at high redshift, their detailed properties can only be recovered for galaxies with $B/T$ gax 0.2. The disk component, by contrast, can be measured with little difficulty.
The role of disk instabilities, such as bars and spiral arms, and the associated resonances, in growing bulges in the inner regions of disk galaxies have long been studied in the low-redshift nearby Universe. There it has long been probed observation
To break the degeneracy among galactic stellar components, we extract kinematic structures using the framework described in Du et al. (2019, 2020). For example, the concept of stellar halos is generalized to weakly-rotating structures that are compos
We exploit the recent, wide samples of far-infrared (FIR) selected galaxies followed-up in X rays and of X-ray/optically selected active galactic nuclei (AGNs) followed-up in the FIR band, along with the classic data on AGN and stellar luminosity fun
We explore stellar population properties separately in the bulge and the disk of double-component cluster galaxies to shed light on the formation of lenticular galaxies in dense environments. We study eight low-redshift clusters from the Sydney-AAO M
We calculate the observable properties of the most massive high-redshift galaxies in the hierarchical formation scenario where stellar spheroid and supermassive black hole growth are fueled by gas-rich mergers. Combining high-resolution hydrodynamica