ﻻ يوجد ملخص باللغة العربية
Let $D={mathbb H}setminus bigcup_{j=1}^N C_j$ be a standard slit domain, where ${mathbb H}$ is the upper half plane and $C_j,1le jle N,$ are mutually disjoint horizontal line segments in ${mathbb H}$. A stochastic Komatu-Loewner evolution denoted by ${rm SKLE}_{alpha,b}$ has been introduced in cite{CF} as a family ${F_t}$ of random growing hulls with $F_tsubset D$ driven by a diffusion process $xi(t)$ on $partial {mathbb H}$ that is determined by certain continuous homogeneous functions $alpha$ and $b$ defined on the space ${cal S}$ of all labelled standard slit domains. We aim at identifying the distribution of a suitably reparametrized ${rm SKLE}_{alpha,b}$ with that of the Loewner evolution on ${mathbb H}$ driven by the path of a certain continuous semimartingale and thereby relating the former to the distribution of ${rm SLE}_{alpha^2}$ when $alpha$ is a constant. We then prove that, when $alpha$ is a constant, ${rm SKLE}_{alpha,b}$ up to some random hitting time and modulo a time change has the same distribution as ${rm SLE}_{alpha^2}$ under a suitable Girsanov transformation. We further show that a reparametrized ${rm SKLE}_{sqrt{6},-b_{rm BMD}}$ has the same distribution as ${rm SLE}_6$, where $b_{rm BMD}$ is the BMD-domain constant indicating the discrepancy of $D$ from ${mathbb H}$ relative to Brownian motion with darning (BMD in abbreviation). A key ingredient of the proof is a hitting time analysis for the absorbing Brownian motion on ${mathbb H}.$ We also revisit and examine the locality property of ${rm SLE}_6$ in several canonical domains. Finally K-L equations and SKLEs for other canonical multiply connected planar domains than the standard slit one are recalled and examined.
These notes survey the first and recent results on large deviations of Schramm-Loewner evolutions (SLE) with the emphasis on interrelations among rate functions and applications to complex analysis. More precisely, we describe the large deviations of
We consider a discrete-time stochastic growth model on the $d$-dimensional lattice with non-negative real numbers as possible values per site. The growth model describes various interesting examples such as oriented site/bond percolation, directed po
We consider a simple discrete-time Markov chain with values in $[0,infty)^{Z^d}$. The Markov chain describes various interesting examples such as oriented percolation, directed polymers in random environment, time discretizations of binary contact pa
Forman et al. (2020+) constructed $(alpha,theta)$-interval partition evolutions for $alphain(0,1)$ and $thetage 0$, in which the total sums of interval lengths (total mass) evolve as squared Bessel processes of dimension $2theta$, where $thetage 0$ a
We discuss properties of dipolar SLE(k) under conditioning. We show that k=2, which describes continuum limits of loop erased random walks, is characterized as being the only value of k such that dipolar SLE conditioned to stop on an interval coincid