ترغب بنشر مسار تعليمي؟ اضغط هنا

Interpretable Deep Neural Networks for Single-Trial EEG Classification

88   0   0.0 ( 0 )
 نشر من قبل Wojciech Samek
 تاريخ النشر 2016
والبحث باللغة English




اسأل ChatGPT حول البحث

Background: In cognitive neuroscience the potential of Deep Neural Networks (DNNs) for solving complex classification tasks is yet to be fully exploited. The most limiting factor is that DNNs as notorious black boxes do not provide insight into neurophysiological phenomena underlying a decision. Layer-wise Relevance Propagation (LRP) has been introduced as a novel method to explain individual network decisions. New Method: We propose the application of DNNs with LRP for the first time for EEG data analysis. Through LRP the single-trial DNN decisions are transformed into heatmaps indicating each data points relevance for the outcome of the decision. Results: DNN achieves classification accuracies comparable to those of CSP-LDA. In subjects with low performance subject-to-subject transfer of trained DNNs can improve the results. The single-trial LRP heatmaps reveal neurophysiologically plausible patterns, resembling CSP-derived scalp maps. Critically, while CSP patterns represent class-wise aggregated information, LRP heatmaps pinpoint neural patterns to single time points in single trials. Comparison with Existing Method(s): We compare the classification performance of DNNs to that of linear CSP-LDA on two data sets related to motor-imaginery BCI. Conclusion: We have demonstrated that DNN is a powerful non-linear tool for EEG analysis. With LRP a new quality of high-resolution assessment of neural activity can be reached. LRP is a potential remedy for the lack of interpretability of DNNs that has limited their utility in neuroscientific applications. The extreme specificity of the LRP-derived heatmaps opens up new avenues for investigating neural activity underlying complex perception or decision-related processes.

قيم البحث

اقرأ أيضاً

Simultaneously recorded electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) can be used to non-invasively measure the spatiotemporal dynamics of the human brain. One challenge is dealing with the artifacts that each modality introduces into the other when the two are recorded concurrently, for example the ballistocardiogram (BCG). We conducted a preliminary comparison of three different MR compatible EEG recording systems and assessed their performance in terms of single-trial classification of the EEG when simultaneously collecting fMRI. We found tradeoffs across all three systems, for example varied ease of setup and improved classification accuracy with reference electrodes (REF) but not for pulse artifact subtraction (PAS) or reference layer adaptive filtering (RLAF).
Accurate prediction of postoperative complications can inform shared decisions between patients and surgeons regarding the appropriateness of surgery, preoperative risk-reduction strategies, and postoperative resource use. Traditional predictive anal ytic tools are hindered by suboptimal performance and usability. We hypothesized that novel deep learning techniques would outperform logistic regression models in predicting postoperative complications. In a single-center longitudinal cohort of 43,943 adult patients undergoing 52,529 major inpatient surgeries, deep learning yielded greater discrimination than logistic regression for all nine complications. Predictive performance was strongest when leveraging the full spectrum of preoperative and intraoperative physiologic time-series electronic health record data. A single multi-task deep learning model yielded greater performance than separate models trained on individual complications. Integrated gradients interpretability mechanisms demonstrated the substantial importance of missing data. Interpretable, multi-task deep neural networks made accurate, patient-level predictions that harbor the potential to augment surgical decision-making.
We introduce a convolutional recurrent neural network (CRNN) for music tagging. CRNNs take advantage of convolutional neural networks (CNNs) for local feature extraction and recurrent neural networks for temporal summarisation of the extracted featur es. We compare CRNN with three CNN structures that have been used for music tagging while controlling the number of parameters with respect to their performance and training time per sample. Overall, we found that CRNNs show a strong performance with respect to the number of parameter and training time, indicating the effectiveness of its hybrid structure in music feature extraction and feature summarisation.
The use of convolutional neural networks (CNNs) for classification tasks has become dominant in various medical imaging applications. At the same time, recent advances in interpretable machine learning techniques have shown great potential in explain ing classifiers decisions. Layer-wise relevance propagation (LRP) has been introduced as one of these novel methods that aim to provide visual interpretation for the networks decisions. In this work we propose the application of 3D CNNs with LRP for the first time for neonatal T2-weighted magnetic resonance imaging (MRI) data analysis. Through LRP, the decisions of our trained classifier are transformed into heatmaps indicating each voxels relevance for the outcome of the decision. Our resulting LRP heatmaps reveal anatomically plausible features in distinguishing preterm neonates from term ones.
Cardiac arrhythmia is a prevalent and significant cause of morbidity and mortality among cardiac ailments. Early diagnosis is crucial in providing intervention for patients suffering from cardiac arrhythmia. Traditionally, diagnosis is performed by e xamination of the Electrocardiogram (ECG) by a cardiologist. This method of diagnosis is hampered by the lack of accessibility to expert cardiologists. For quite some time, signal processing methods had been used to automate arrhythmia diagnosis. However, these traditional methods require expert knowledge and are unable to model a wide range of arrhythmia. Recently, Deep Learning methods have provided solutions to performing arrhythmia diagnosis at scale. However, the black-box nature of these models prohibit clinical interpretation of cardiac arrhythmia. There is a dire need to correlate the obtained model outputs to the corresponding segments of the ECG. To this end, two methods are proposed to provide interpretability to the models. The first method is a novel application of Gradient-weighted Class Activation Map (Grad-CAM) for visualizing the saliency of the CNN model. In the second approach, saliency is derived by learning the input deletion mask for the LSTM model. The visualizations are provided on a model whose competence is established by comparisons against baselines. The results of model saliency not only provide insight into the prediction capability of the model but also aligns with the medical literature for the classification of cardiac arrhythmia.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا