ترغب بنشر مسار تعليمي؟ اضغط هنا

A splitting approach for the magnetic Schrodinger equation

171   0   0.0 ( 0 )
 نشر من قبل Marco Caliari
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Schrodinger equation in the presence of an external electromagnetic field is an important problem in computational quantum mechanics. It also provides a nice example of a differential equation whose flow can be split with benefit into three parts. After presenting a splitting approach for three operators with two of them being unbounded, we exemplarily prove first-order convergence of Lie splitting in this framework. The result is then applied to the magnetic Schrodinger equation, which is split into its potential, kinetic and advective parts. The latter requires special treatment in order not to lose the conservation properties of the scheme. We discuss several options. Numerical examples in one, two and three space dimensions show that the method of characteristics coupled with a nonequispaced fast Fourier transform (NFFT) provides a fast and reliable technique for achieving mass conservation at the discrete level.



قيم البحث

اقرأ أيضاً

98 - Yuya Suzuki , Dirk Nuyens 2019
In this paper, we propose a numerical method to approximate the solution of the time-dependent Schrodinger equation with periodic boundary condition in a high-dimensional setting. We discretize space by using the Fourier pseudo-spectral method on ran k-$1$ lattice points, and then discretize time by using a higher-order exponential operator splitting method. In this scheme the convergence rate of the time discretization depends on properties of the spatial discretization. We prove that the proposed method, using rank-$1$ lattice points in space, allows to obtain higher-order time convergence, and, additionally, that the necessary condition on the space discretization can be independent of the problem dimension $d$. We illustrate our method by numerical results from 2 to 8 dimensions which show that such higher-order convergence can really be obtained in practice.
We approximate the solution for the time dependent Schrodinger equation (TDSE) in two steps. We first use a pseudo-spectral collocation method that uses samples of functions on rank-1 or rank-r lattice points with unitary Fourier transforms. We then get a system of ordinary differential equations in time, which we solve approximately by stepping in time using the Strang splitting method. We prove that the numerical scheme proposed converges quadratically with respect to the time step size, given that the potential is in a Korobov space with the smoothness parameter greater than $9/2$. Particularly, we prove that the required degree of smoothness is independent of the dimension of the problem. We demonstrate our new method by comparing with results using sparse grids from [12], with several numerical examples showing large advantage for our new method and pushing the examples to higher dimensionality. The proposed method has two distinctive features from a numerical perspective: (i) numerical results show the error convergence of time discretization is consistent even for higher-dimensional problems; (ii) by using the rank-$1$ lattice points, the solution can be efficiently computed (and further time stepped) using only $1$-dimensional Fast Fourier Transforms.
In this paper, we analyse a new exponential-type integrator for the nonlinear cubic Schrodinger equation on the $d$ dimensional torus $mathbb T^d$. The scheme has recently also been derived in a wider context of decorated trees in [Y. Bruned and K. S chratz, arXiv:2005.01649]. It is explicit and efficient to implement. Here, we present an alternative derivation, and we give a rigorous error analysis. In particular, we prove second-order convergence in $H^gamma(mathbb T^d)$ for initial data in $H^{gamma+2}(mathbb T^d)$ for any $gamma > d/2$. This improves the previous work in [Knoller, A. Ostermann, and K. Schratz, SIAM J. Numer. Anal. 57 (2019), 1967-1986]. The design of the scheme is based on a new method to approximate the nonlinear frequency interaction. This allows us to deal with the complex resonance structure in arbitrary dimensions. Numerical experiments that are in line with the theoretical result complement this work.
For the solution of the cubic nonlinear Schrodinger equation in one space dimension, we propose and analyse a fully discrete low-regularity integrator. The scheme is explicit and can easily be implemented using the fast Fourier transform with a compl exity of $mathcal{O}(Nlog N)$ operations per time step, where $N$ denotes the degrees of freedom in the spatial discretisation. We prove that the new scheme provides an $mathcal{O}(tau^{frac32gamma-frac12-varepsilon}+N^{-gamma})$ error bound in $L^2$ for any initial data belonging to $H^gamma$, $frac12<gammaleq 1$, where $tau$ denotes the temporal step size. Numerical examples illustrate this convergence behavior.
We analyze the qualitative properties and the order of convergence of a splitting scheme for a class of nonlinear stochastic Schrodinger equations driven by additive It^o noise. The class of nonlinearities of interest includes nonlocal interaction cu bic nonlinearities. We show that the numerical solution is symplectic and preserves the expected mass for all times. On top of that, for the convergence analysis, some exponential moment bounds for the exact and numerical solutions are proved. This enables us to provide strong orders of convergence as well as orders of convergence in probability and almost surely. Finally, extensive numerical experiments illustrate the performance of the proposed numerical scheme.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا