ترغب بنشر مسار تعليمي؟ اضغط هنا

On the radial distribution of Galactic cosmic rays

65   0   0.0 ( 0 )
 نشر من قبل Sarah Recchia
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The spectrum and morphology of the diffuse Galactic gamma-ray emission carries valuable information on cosmic ray (CR) propagation. Recent results obtained by analyzing Fermi-LAT data accumulated over seven years of observation show a substantial variation of the CR spectrum as a function of the distance from the Galactic Center. The spatial distribution of the CR density in the outer Galaxy appears to be weakly dependent upon the galactocentric distance, as found in previous studies as well, while the density in the central region of the Galaxy was found to exceed the value measured in the outer Galaxy. At the same time, Fermi-LAT data suggest a gradual spectral softening while moving outward from the center of the Galaxy to its outskirts. These findings represent a challenge for standard calculations of CR propagation based on assuming a uniform diffusion coefficient within the Galactic volume. Here we present a model of non-linear CR propagation in which transport is due to particle scattering and advection off self-generated turbulence. We find that for a realistic distribution of CR sources following the spatial distribution of supernova remnants and the space dependence of the magnetic field on galactocentric distance, both the spatial profile of CR density and the spectral softening can easily be accounted for.



قيم البحث

اقرأ أيضاً

243 - N. Prantzos 2011
The composition of Galactic Cosmic Rays (GCR) presents strong similarities to the standard (cosmic) composition, but also noticeable differences, the most important being the high isotopic ratio of Ne22/Ne20 which is about 5 times higher in GCR than in the Sun. This ratio provides key information on the GCR origin. We investigate the idea that GCR are accelerated by the forward shocks of supernova explosions, as they run through the presupernova winds of the massive stars and through the interstellar medium. We use detailed wind and core yields of rotating and non-rotating models of massive stars with mass loss, as well as simple models for the properties of the forward shock and of the circumstellar medium. We find that the observed GCR Ne22/Ne20 ratio can be explained if GCR are accelerated only during the early Sedov phase, for shock velocities >1500-1900 km/s. The acceleration efficiency is found to be of the order of 1.e-6 - 1.e-5, i.e. a few particles out of a million encountered by the shock escape the SN at GCR energies. We also show quantitatively that the widely publicized idea that GCR are accelerated in superbubbles fails to account for the high Ne22/Ne20 ratio in GCR
126 - Pasquale Blasi 2012
The origin of the bulk of cosmic rays (CRs) observed at Earth is the topic of a century long investigation, paved with successes and failures. From the energetic point of view, supernova remnants (SNRs) remain the most plausible sources of CRs up to rigidity ? 10^6-10^7 GV. This confidence somehow resulted in the construction of a paradigm, the so-called SNR paradigm: CRs are accelerated through diffusive shock acceleration in SNRs and propagate diffusively in the Galaxy in an energy dependent way. Qualitative confirmation of the SNR acceleration scenario has recently been provided by gamma ray and X-ray observations. Diffusive propagation in the Galaxy is probed observationally through measurement of the secondary to primary nuclei flux ratios (such as B/C). There are however some weak points in the paradigm, which suggest that we are probably missing some physical ingredients in our models. The theory of diffusive shock acceleration at SNR shocks predicts spectra of accelerated particles which are systematically too hard compared with the ones inferred from gamma ray observations. Moreover, hard injection spectra indirectly imply a steep energy dependence of the diffusion coefficient in the Galaxy, which in turn leads to anisotropy larger than the observed one. Moreover recent measurements of the flux of nuclei suggest that the spectra have a break at rigidity ? 200 GV, which does not sit well with the common wisdom in acceleration and propagation. In this paper I will review these new developments and suggest some possible implications.
311 - Ya. N. Istomin 2011
It is shown that the relativistic jet, emitted from the center of the Galaxy during its activity, possessed power and energy spectrum of accelerated protons sufficient to explain the current cosmic rays distribution in the Galaxy. Proton acceleration takes place on the light cylinder surface formed by the rotation of a massive black hole carring into rotation the radial magnetic field and the magnetosphere. Observed in gamma, x-ray and radio bands bubbles above and below the galactic plane can be remnants of this bipolar get. The size of the bubble defines the time of the jets start, $simeq 2.4cdot 10^7$ years ago. The jet worked more than $10^7$ years, but less than $2.4cdot10^7$ years.
408 - Ya. N. Istomin 2014
From the analysis of the flux of high energy particles, $E>3cdot 10^{18}eV$, it is shown that the distribution of the power density of extragalactic rays over energy is of the power law, ${bar q}(E)propto E^{-2.7}$, with the same index of $2.7$ that has the distribution of Galactic cosmic rays before so called knee, $E<3cdot 10^{15}eV$. However, the average power of extragalactic sources, which is of ${cal E}simeq 10^{43}erg ,s^{-1}$, at least two orders exceeds the power emitted by the Galaxy in cosmic rays, assuming that the density of galaxies is estimated as $N_gsimeq 1 Mpc^{-3}$. Considering that such power can be provided by relativistic jets from active galactic nuclei with the power ${cal E}simeq 10^{45} - 10^{46} erg , s^{-1}$, we estimate the density of extragalactic sources of cosmic rays as $N_gsimeq 10^{-2}-10^{-3}, Mpc^{-3}$. Assuming the same nature of Galactic and extragalactic rays, we conclude that the Galactic rays were produced by a relativistic jet emitted from the Galactic center during the period of its activity in the past. The remnants of a bipolar jet are now observed in the form of bubbles of relativistic gas above and below the Galactic plane. The break, observed in the spectrum of Galactic rays (knee), is explained by fast escape of energetic particle, $E>3cdot 10^{15}eV$, from the Galaxy because of the dependence of the coefficient of diffusion of cosmic rays on energy, $Dpropto E^{0.7}$. The obtained index of the density distribution of particles over energy, $N(E)propto E^{-2.7-0.7/2}=E^{-3.05}$, for $E>3cdot 10^{15}eV$ agrees well with the observed one, $N(E)propto E^{-3.1}$. Estimated time of termination of the jet in the Galaxy is $4.2cdot 10^{4}$ years ago.
41 - Manuela Vecchi 2018
Recent results by space borne experiments took cosmic ray data to a precision level. These new results are able to challenge the conventional scenario for cosmic ray acceleration and propagation in the Milky Way. In these contributions, written for t he XVII Vulcano Workshop, we will give an overview of the latest results of the cosmic ray fluxes, and some possible interpretations will be discussed. These measurements have a common feature, namely the presence of unexpected and still not yet fully understood spectral features.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا