ﻻ يوجد ملخص باللغة العربية
A model is proposed for the spectrum of $Lambda$ hypernuclei based on the $u(3)times u(2)$ Lie algebra, in which the internal degrees of freedom of the spin-1/2 $Lambda$ particle are treated in the Fermionic $u(2)$ scheme, while the motion of the hyperon inside a nucleus is described in the Bosonic $u(3)$ harmonic oscillator scheme. Within this model, a simple formula for single-particle energies of the $Lambda$ particle is obtained from the natural dynamical symmetry. The formula is applied to the experimental data on the reaction spectroscopy for the $^{89}_Lambda$Y and $^{51}_Lambda$V hypernuclei, providing a clear theoretical interpretation of the observed structures.
Having in mind its future extension for theoretical investigations related to charmed nuclei, we develop a relativistic formalism for the nonmesonic weak decay of single-$Lambda$ hypernuclei in the framework of the independent-particle shell model an
We extend the relativistic point coupling model to single-$Lambda$ hypernuclei. For this purpose, we add $N$-$Lambda$ effective contact couplings to the model Lagrangian, and determine the parameters by fitting to the experimental data for $Lambda$ b
A particle-hole model is developed to describe the excitation spectrum of single lambda hypernuclei and the possible presence of collective effects is explored by making a comparison with the mean-field calculations. Results for the spectra of 12C, 1
$Lambda^+_c$- and $Lambda_b$-hypernuclei are studied in the quark-meson coupling (QMC) model. Comparisons are made with the results for $Lambda$-hypernuclei studied in the same model previously. Although the scalar and vector potentials felt by the $
The structure of single-$Lambda$ hypernuclei is studied using the chiral hyperon-nucleon potentials derived at leading order (LO) and next-to-leading order (NLO) by the J{u}lich--Bonn--Munich group. Results for the separation energies of $Lambda$ sin