ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling spatial variations of the speed of light

127   0   0.0 ( 0 )
 نشر من قبل Vincenzo Salzano Dr.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we extend a new method to measure possible variation of the speed of light by using Baryon Acoustic Oscillations and the Hubble function presented in our earlier paper [V. Salzano, M. P. Dc{a}browski, and R. Lazkoz, Phys. Rev. D93, 063521 (2016)] onto an inhomogeneous model of the universe. The method relies on the fact that there is a simple relation between the angular diameter distance $(D_{A})$ maximum and the Hubble function $(H)$ evaluated at the same maximum-condition redshift, which includes speed of light $c$. One limit of such method was the assumption of null spatial curvature (even if we showed that even a non-zero curvature would have negligible effects). Here, we move one step further: we explicitly assume a model with intrinsic non-null curvature, and calculate the exact relation between $D_{A}$ and $H$ in this case. Then, we evaluate if current or future missions such as SKA can be sensitive enough to detect any such kind of spatial variation of $c$ which can perhaps be related to the recently observed spatial variation of the fine structure constant (an effect known as $alpha$-dipole).

قيم البحث

اقرأ أيضاً

In this letter we describe a new method to use Baryon Acoustic Oscillations (BAO) to derive a constraint on the possible variation of the speed of light. The method relies on the fact that there is a simple relation between the angular diameter dista nce $(D_{A})$ maximum and the Hubble function $(H)$ evaluated at the same maximum-condition redshift, which includes speed of light $c$. We note the close analogy of the BAO probe with a laboratory experiment: here we have $D_{A}$ which plays the role of a standard (cosmological) ruler, and $H^{-1}$, with the dimension of time, as a (cosmological) clock. We evaluate if current or future missions such as Euclid can be sensitive enough to detect any variation of $c$.
We derive a luminosity distance formula for the varying speed of light (VSL) theory which involves higher order characteristics of expansion such as jerk, snap and lerk which can test the impact of varying $c$ onto the evolution of the universe. We s how that the effect of varying $c$ is possible to be isolated due to the relations connecting observational parameters already by measuring the second-order term in redshift $z$ unless there is a redundancy between the curvature and an exotic fluid of cosmic strings scaling the same way as the curvature.
133 - B. Wojtsekhowski 2014
Three experimental concepts investigating possible anisotropy of the speed of light are presented. They are based on i) beam deflection in a 180 degree magnetic arc, ii) narrow resonance production in an electron-positron collider, and iii) the ratio of magnetic moments of an electron and a positron moving in opposite directions.
56 - P.P. Avelino 2001
In a recent article, a simple `spherical bubble toy model for a spatially varying vacuum energy density was introduced, and type Ia supernovae data was used to constrain it. Here we generalize the model to allow for the fact that we may not necessari ly be at the centre of a region with a given set of cosmological parameters, and discuss the constraints on these models coming from Cosmic Microwave Background Radiation data. We find tight constraints on possible spatial variations of the vacuum energy density for any significant deviations from the centre of the bubble and we comment on the relevance of our results.
We have investigated the basic statistics of the cosmological dispersion measure (DM) -- such as its mean, variance, probability distribution, angular power spectrum and correlation function -- using the state-of-the-art hydrodynamic simulations, Ill ustrisTNG300, for the fast radio burst (FRB) cosmology. To model the DM statistics, we first measured the free-electron abundance and the power spectrum of its spatial fluctuations. The free-electron power spectrum turns out to be consistent with the dark matter power spectrum at large scales, but it is strongly damped at small scales ($lesssim 1$Mpc) owing to the stellar and active galactic nucleus feedback. The free-electron power spectrum is well modelled using a scale-dependent bias factor (the ratio of its fluctuation amplitude to that of the dark matter). We provide analytical fitting functions for the free-electron abundance and its bias factor. We next constructed mock sky maps of the DM by performing standard ray-tracing simulations with the TNG300 data. The DM statistics are calculated analytically from the fitting functions of the free-electron distribution, which agree well with the simulation results measured from the mock maps. We have also obtained the probability distribution of source redshift for a given DM, which helps in identifying the host galaxies of FRBs from the measured DMs. The angular two-point correlation function of the DM is described by a simple power law, $xi(theta) approx 2400 (theta/{rm deg})^{-1} , {rm pc}^2 , {rm cm}^{-6}$, which we anticipate will be confirmed by future observations when thousands of FRBs are available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا