ترغب بنشر مسار تعليمي؟ اضغط هنا

First principles studies of the Gilbert damping and exchange interactions for half-metallic Heuslers alloys

118   0   0.0 ( 0 )
 نشر من قبل Jonathan Chico
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Heusler alloys have been intensively studied due to the wide variety of properties that they exhibit. One of these properties is of particular interest for technological applications, i.e. the fact that some Heusler alloys are half-metallic. In the following, a systematic study of the magnetic properties of three different Heusler families $textrm{Co}_2textrm{Mn}textrm{Z}$, $text{Co}_2text{Fe}text{Z}$ and $textrm{Mn}_2textrm{V}textrm{Z}$ with $text{Z}=left(text{Al, Si, Ga, Ge}right)$ is performed. A key aspect is the determination of the Gilbert damping from first principles calculations, with special focus on the role played by different approximations, the effect that substitutional disorder and temperature effects. Heisenberg exchange interactions and critical temperature for the alloys are also calculated as well as magnon dispersion relations for representative systems, the ferromagnetic $textrm{Co}_2textrm{Fe}textrm{Si}$ and the ferrimagnetic $textrm{Mn}_2textrm{V}textrm{Al}$. Correlations effects beyond standard density-functional theory are treated using both the local spin density approximation including the Hubbard $U$ and the local spin density approximation plus dynamical mean field theory approximation, which allows to determine if dynamical self-energy corrections can remedy some of the inconsistencies which were previously reported for these alloys.

قيم البحث

اقرأ أيضاً

Using a formulation of first-principles scattering theory that includes disorder and spin-orbit coupling on an equal footing, we calculate the resistivity $rho$, spin flip diffusion length $l_{sf}$ and the Gilbert damping parameter $alpha$ for Ni$_{1 -x}$Fe$_x$ substitutional alloys as a function of $x$. For the technologically important Ni$_{80}$Fe$_{20}$ alloy, permalloy, we calculate values of $rho = 3.5 pm 0.15$ $mu$Ohm-cm, $l_{sf}=5.5 pm 0.3$ nm, and $alpha= 0.0046 pm 0.0001$ compared to experimental low-temperature values in the range $4.2-4.8$ $mu$Ohm-cm for $rho$, $5.0-6.0$ nm for $l_{sf}$, and $0.004-0.013$ for $alpha$ indicating that the theoretical formalism captures the most important contributions to these parameters.
Yttrium Iron Garnet is the ubiquitous magnetic insulator used for studying pure spin currents. The exchange constants reported in the literature vary considerably between different experiments and fitting procedures. Here we calculate them from first -principles. The local Coulomb correction (U - J) of density functional theory is chosen such that the parameterized spin model reproduces the experimental Curie temperature and a large electronic band gap, ensuring an insulating phase. The magnon spectrum calculated with our parameters agrees reasonably well with that measured by neutron scattering. A residual disagreement about the frequencies of optical modes indicates the limits of the present methodology.
A method for the calculations of the Gilbert damping parameter $alpha$ is presented, which based on the linear response formalism, has been implemented within the fully relativistic Korringa-Kohn-Rostoker band structure method in combination with the coherent potential approximation alloy theory. To account for thermal displacements of atoms as a scattering mechanism, an alloy-analogy model is introduced. This allows the determination of $alpha$ for various types of materials, such as elemental magnetic systems and ordered magnetic compounds at finite temperature, as well as for disordered magnetic alloys at $T = 0$ K and above. The effects of spin-orbit coupling, chemical and temperature induced structural disorder are analyzed. Calculations have been performed for the 3$d$ transition-metals bcc Fe, hcp Co, and fcc Ni, their binary alloys bcc Fe$_{1-x}$Co$_{x}$, fcc Ni$_{1-x}$Fe$_x$, fcc Ni$_{1-x}$Co$_x$ and bcc Fe$_{1-x}$V$_{x}$, and for 5d impurities in transition-metal alloys. All results are in satisfying agreement with experiment.
We present an ab initio theory of the Gilbert damping in substitutionally disordered ferromagnetic alloys. The theory rests on introduced nonlocal torques which replace traditional local torque operators in the well-known torque-correlation formula a nd which can be formulated within the atomic-sphere approximation. The formalism is sketched in a simple tight-binding model and worked out in detail in the relativistic tight-binding linear muffin-tin orbital (TB-LMTO) method and the coherent potential approximation (CPA). The resulting nonlocal torques are represented by nonrandom, non-site-diagonal and spin-independent matrices, which simplifies the configuration averaging. The CPA-vertex corrections play a crucial role for the internal consistency of the theory and for its exact equivalence to other first-principles approaches based on the random local torques. This equivalence is also illustrated by the calculated Gilbert damping parameters for binary NiFe and FeCo random alloys, for pure iron with a model atomic-level disorder, and for stoichiometric FePt alloys with a varying degree of L10 atomic long-range order.
Electron-positron momentum distributions measured by the coincidence Doppler broadening method can be used in the chemical analysis of the annihilation environment, typically a vacancy-impurity complex in a solid. In the present work, we study possib ilities for a quantitative analysis, i.e., for distinguishing the average numbers of different atomic species around the defect. First-principles electronic structure calculations self-consistently determining electron and positron densities and ion positions are performed for vacancy-solute complexes in Al-Cu, Al-Mg-Cu, and Al-Mg-Cu-Ag alloys. The ensuing simulated coincidence Doppler broadening spectra are compared with measured ones for defect identification. A linear fitting procedure, which uses the spectra for positrons trapped at vacancies in pure constituent metals as components, has previously been employed to find the relative percentages of different atomic species around the vacancy [A. Somoza et al. Phys. Rev. B 65, 094107 (2002)]. We test the reliability of the procedure by the help of first-principles results for vacancy-solute complexes and vacancies in constituent metals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا