ﻻ يوجد ملخص باللغة العربية
We develop a new method for constructing approximate decompositions of dense graphs into sparse graphs and apply it to longstanding decomposition problems. For instance, our results imply the following. Let $G$ be a quasi-random $n$-vertex graph and suppose $H_1,dots,H_s$ are bounded degree $n$-vertex graphs with $sum_{i=1}^{s} e(H_i) leq (1-o(1)) e(G)$. Then $H_1,dots,H_s$ can be packed edge-disjointly into $G$. The case when $G$ is the complete graph $K_n$ implies an approximate version of the tree packing conjecture of Gyarfas and Lehel for bounded degree trees, and of the Oberwolfach problem. We provide a more general version of the above approximate decomposition result which can be applied to super-regular graphs and thus can be combined with Szemeredis regularity lemma. In particular our result can be viewed as an extension of the classical blow-up lemma of Komlos, SarkH{o}zy and Szemeredi to the setting of approximate decompositions.
Kim, Kuhn, Osthus and Tyomkyn (Trans. Amer. Math. Soc. 371 (2019), 4655--4742) greatly extended the well-known blow-up lemma of Komlos, Sarkozy and Szemeredi by proving a `blow-up lemma for approximate decompositions which states that multipartite qu
A subgraph of an edge-coloured graph is called rainbow if all its edges have different colours. We prove a rainbow version of the blow-up lemma of Komlos, Sarkozy and Szemeredi that applies to almost optimally bounded colourings. A corollary of this
The blow-up lemma states that a system of super-regular pairs contains all bounded degree spanning graphs as subgraphs that embed into a corresponding system of complete pairs. This lemma has far-reaching applications in extremal combinatorics. We
We study lattice-theoretical extensions of the celebrated Sauer-Shelah-Perles Lemma. We conjecture that a general Sauer-Shelah-Perlem Lemma holds for a lattice $L$ if and only if $L$ is relatively complemented, and prove partial results towards this conjecture.
For a subgraph $G$ of the blow-up of a graph $F$, we let $delta^*(G)$ be the smallest minimum degree over all of the bipartite subgraphs of $G$ induced by pairs of parts that correspond to edges of $F$. In [Triangle-factors in a balanced blown-up tri