ﻻ يوجد ملخص باللغة العربية
We have analyzed multi-wavelength observations and magnetic-field data for the solar flare of May 10, 2012 (04:18 UT) and have detected a sign inversion of the signal in the line-of-sight magnetic measurements in the umbra of a small spot. This effect is associated, at least partly, with the emergence of a new magnetic field. Almost at the same time, a burst of hard X-rays was recorded, and a wave in the vacuum ultraviolet (EUV) range (a sunquake) was generated due to the impact of the disturbance in the energy release range on the photosphere. At the beginning of the event, a sigmoid flare was recorded, but it did not spread, as it usually does, along the polarity inversion (neutral) line. SDO/HMI full-vector measurements were used to extrapolate the AR 11476 magnetic field to the corona, and the distribution of vertical currents $j_z$ in the photosphere was obtained. The distribution of currents in the active region shows that the relationship between them and the occurrence of flares is very intricate. We have corroborated that the expected ideal behavior of the current system before and after the flare (e.g., see (Sharykin and Kosovichev, 2015)) is observed only in the sigmoid region. The results obtained were compared with the observations of two other flares recorded in this AR on the same day, one of which was similar to the flare under discussion and the other was of different type. Our results confirm that the formation and eruption of large-scale magnetic flux ropes in sigmoid flares are associated with the shear motions in the photosphere and the emergence of twisted magnetic tubes, as well as with the subsequent development of the torus instability.
We estimated photospheric velocities by separately applying the Fourier Local Correlation Tracking (FLCT) and Differential Affine Velocity Estimator (DAVE) methods to 2708 co-registered pairs of SOHO/MDI magnetograms, with nominal 96-minute cadence a
Many previous studies have shown that magnetic fields as well as sunspot structures present rapid and irreversible changes associated with solar flares. In this paper we first use five X-class flares observed by SDO/HMI to show that not only the magn
Magnetic flux generated and intensified by the solar dynamo emerges into the solar atmosphere, forming active regions (ARs) including sunspots. Existing theories of flux emergence suggest that the magnetic flux can rise buoyantly through the convecti
Three homologous C-class flares and one last M-class flare were observed by both the Solar Dynamics Observatory (SDO) and the Hinode EUV Imaging Spectrometer (EIS) in the AR 11429 on March 9, 2012. All the recurrent flares occurred within a short int
There are still debates whether particle acceleration in solar flares may occur due to interruption of electric currents flowing along magnetic loops. To contribute to this problem, we performed the first statistical study of relationships between fl