ﻻ يوجد ملخص باللغة العربية
The need for the extra dimension in Kustaanheimo-Stiefel (KS) regularization is explained by the topology of the Hopf fibration, which defines the geometry and structure of KS space. A trajectory in Cartesian space is represented by a four-dimensional manifold, called the fundamental manifold. Based on geometric and topological aspects classical concepts of stability are translated to KS language. The separation between manifolds of solutions generalizes the concept of Lyapunov stability. The dimension-raising nature of the fibration transforms fixed points, limit cycles, attractive sets, and Poincare sections to higher-dimensional subspaces. From these concepts chaotic systems are studied. In strongly perturbed problems the numerical error can break the topological structure of KS space: points in a fiber are no longer transformed to the same point in Cartesian space. An observer in three dimensions will see orbits departing from the same initial conditions but diverging in time. This apparent randomness of the integration can only be understood in four dimensions. The concept of topological stability results in a simple method for estimating the time scale in which numerical simulations can be trusted. Ideally all trajectories departing from the same fiber should be KS transformed to a unique trajectory in three-dimensional space, because the fundamental manifold that they constitute is unique. By monitoring how trajectories departing from one fiber separate from the fundamental manifold a critical time, equivalent to the Lyapunov time, is estimated. These concepts are tested on N-body examples: the Pythagorean problem, and an example of field stars interacting with a binary.
The Kustaanheimo-Stiefel (KS) transformation maps the non-linear and singular equations of motion of the three-dimensional Kepler problem to the linear and regular equations of a four-dimensional harmonic oscillator. It is used extensively in studies
The Kustaanheimo-Stiefel transform turns a gravitational two-body problem into a harmonic oscillator, by going to four dimensions. In addition to the mathematical-physics interest, the KS transform has proved very useful in N-body simulations, where
Ideal MHD relaxation is the topology-conserving reconfiguration of a magnetic field into a lower energy state where the net force is zero. This is achieved by modeling the plasma as perfectly conducting viscous fluid. It is an important tool for inve
Based on the geometry of entangled three and two qubit states, we present the connection between the entanglement measure of the three-qubit state defined using the last Hopf fibration and the entanglement measures known as two- and three-tangle. Mor
The mechanisms causing millimeter-wave polarization in protoplanetary disks are under debate. To disentangle the polarization mechanisms, we observe the protoplanetary disk around HL Tau at 3.1 mm with the Atacama Large Millimeter/submillimeter Array