ﻻ يوجد ملخص باللغة العربية
The use of Lyapunov conditions for proving functional inequalities was initiated in [5]. It was shown in [4, 30] that there is an equivalence between a Poincar{e} inequality, the existence of some Lyapunov function and the exponential integrability of hitting times. In the present paper, we close the scheme of the interplay between Lyapunov conditions and functional inequalities by $bullet$ showing that strong functional inequalities are equivalent to Lyapunov type conditions; $bullet$ showing that these Lyapunov conditions are characterized by the finiteness of generalized exponential moments of hitting times. We also give some complement concerning the link between Lyapunov conditions and in-tegrability property of the invariant probability measure and as such transportation inequalities , and we show that some unbounded Lyapunov conditions can lead to uniform ergodicity, and coming down from infinity property.
We generalize the notion of strong stationary time and we give a representation formula for the hitting time to a target set in the general case of non-reversible Markov processes.
In the setting of non-reversible Markov chains on finite or countable state space, exact results on the distribution of the first hitting time to a given set $G$ are obtained. A new notion of strong metastability time is introduced to describe the lo
For the last ten years, almost every theoretical result concerning the expected run time of a randomized search heuristic used drift theory, making it the arguably most important tool in this domain. Its success is due to its ease of use and its powe
Let 0<alpha<1/2. We show that the mixing time of a continuous-time reversible Markov chain on a finite state space is about as large as the largest expected hitting time of a subset of stationary measure at least alpha of the state space. Suitably mo
This paper is concerned with the analysis of blow-ups for two McKean-Vlasov equations involving hitting times. Let $(B(t); , t ge 0)$ be standard Brownian motion, and $tau:= inf{t ge 0: X(t) le 0}$ be the hitting time to zero of a given process $X$.