ترغب بنشر مسار تعليمي؟ اضغط هنا

Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. V. A New Size-Luminosity Scaling Relation for the Broad-Line Region

99   0   0.0 ( 0 )
 نشر من قبل Pu Du
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper reports results of the third-year campaign of monitoring super-Eddington accreting massive black holes (SEAMBHs) in active galactic nuclei (AGNs) between 2014-2015. Ten new targets were selected from quasar sample of Sloan Digital Sky Survey (SDSS), which are generally more luminous than the SEAMBH candidates in last two years. H$beta$ lags ($tau_{_{rm Hbeta}}$) in five of the 10 quasars have been successfully measured in this monitoring season. We find that the lags are generally shorter, by large factors, than those of objects with same optical luminosity, in light of the well-known $R_{_{rm Hbeta}}-L_{5100}$ relation. The five quasars have dimensionless accretion rates of $dot{mathscr{M}}=10-10^3$. Combining measurements of the previous SEAMBHs, we find that the reduction of H$beta$ lags tightly depends on accretion rates, $tau_{_{rm Hbeta}}/tau_{_{R-L}}proptodot{mathscr{M}}^{-0.42}$, where $tau_{_{R-L}}$ is the H$beta$ lag from the normal $R_{_{rm Hbeta}}-L_{5100}$ relation. Fitting 63 mapped AGNs, we present a new scaling relation for the broad-line region: $R_{_{rm Hbeta}}=alpha_1ell_{44}^{beta_1},minleft[1,left(dot{mathscr{M}}/dot{mathscr{M}}_cright)^{-gamma_1}right]$, where $ell_{44}=L_{5100}/10^{44},rm erg~s^{-1}$ is 5100 AA continuum luminosity, and coefficients of $alpha_1=(29.6_{-2.8}^{+2.7})$ lt-d, $beta_1=0.56_{-0.03}^{+0.03}$, $gamma_1=0.52_{-0.16}^{+0.33}$ and $dot{mathscr{M}}_c=11.19_{-6.22}^{+2.29}$. This relation is applicable to AGNs over a wide range of accretion rates, from $10^{-3}$ to $10^3$. Implications of this new relation are briefly discussed.



قيم البحث

اقرأ أيضاً

We compiled a sample of 73 active galactic nuclei (AGNs) with reverberation mapping (RM) observations from RM campaigns including our ongoing campaign of monitoring super-Eddington accreting massive black holes (SEAMBHs). This sample covers a large r ange of black hole (BH) mass $(M_{bullet}=10^{6-9}~M_odot)$, dimensionless accretion rates $(dot{mathscr{M}}=10^{-2.7}-10^{2.7})$ and 5100~AA~luminosity $(L_{5100}=10^{42-46}~rm erg~s^{-1})$, allowing us to systematically study the AGN variability and their relations with BH mass, accretion rates, and optical luminosity. We employed the damped random walk (DRW) model to delineate the optical variability of continuum at 5100~AA~and obtained damped variability timescale ($tau_{rm d}$) and amplitude ($sigma_{rm d}$) using a Markov Chain Monte Carlo (MCMC) method. We also estimated the traditional variability amplitudes ($F_{rm var}$), which provide a model-independent measure and therefore are used to test the DRW results. We found that AGN variability characteristics are generally correlated with $(M_{bullet},dot{mathscr{M}},L_{5100})$. These correlations are smooth from sub-Eddington to super-Eddington accretion AGNs, probably implying that the AGN variability may be caused by the same physical mechanism.
Most results of the reverberation monitoring of active galaxies showed a universal scaling of the time delay of the Hbeta emission region with the monochromatic flux at 5100 A, with very small dipersion. Such a scaling favored the dust-based formatio n mechanism of the Broad Line Region (BLR). Recent reverberation measurements showed that actually a significant fraction of objects exhibits horter lags than the previously found scaling. Here we demonstrate that these shorter lags can be explained by the old concept of scaling of the BLR size with the ionization parameter. Assuming a universal value of this parameter and universal value of the cloud density reproduces the distribution of observational points in the time delay vs. monochromatic flux plane, provided that a range of black hole spins is allowed. However, a confirmation of the new measurements for low/moderate Eddington ratio sources is strongly needed before the dust-based origin of the BLR can be excluded.
148 - Pu Du , Kai-Xing Lu , Chen Hu 2016
In the sixth of the series of papers reporting on a large reverberation mapping (RM) campaign of active galactic nuclei (AGNs) with high accretion rates, we present velocity-resolved time lags of H$beta$ emission lines for nine objects observed in th e campaign during 2012$-$2013. In order to correct the line-broadening caused by seeing and instruments before the analysis of velocity-resolved RM, we adopt Richardson-Lucy deconvolution to reconstruct their H$beta$ profiles. The validity and effectiveness of the deconvolution are checked out by Monte Carlo simulation. Five among the nine objects show clear dependence of time delay on velocity. Mrk 335 and Mrk 486 show signatures of gas inflow whereas the clouds in the broad-line regions (BLRs) of Mrk 142 and MCG +06-26-012 tend to be radial outflowing. Mrk 1044 is consistent with the case of virialized motions. The lags of the rest four are not velocity-resolvable. The velocity-resolved RM of super-Eddington accreting massive black holes (SEAMBHs) shows that they have diversity of the kinematics in their BLRs. Comparing with the AGNs with sub-Eddington accretion rates, we do not find significant differences in the BLR kinematics of SEAMBHs.
We performed an intensive accretion disk reverberation mapping campaign on the high accretion rate active galactic nucleus Mrk 142 in early 2019. Mrk 142 was monitored with the Neil Gehrels Swift Observatory for 4 months in X-rays and 6 UV/optical fi lters. Ground-based photometric monitoring was obtained from the Las Cumbres Observatory, Liverpool Telescope and Dan Zowada Memorial Observatory in ugriz filters and the Yunnan Astronomical Observatory in V. Mrk 142 was highly variable throughout, displaying correlated variability across all wavelengths. We measure significant time lags between the different wavelength light curves, finding that through the UV and optical the wavelength-dependent lags, $tau(lambda)$, generally follow the relation $tau(lambda) propto lambda^{4/3}$, as expected for the $Tpropto R^{-3/4}$ profile of a steady-state optically-thick, geometrically-thin accretion disk, though can also be fit by $tau(lambda) propto lambda^{2}$, as expected for a slim disk. The exceptions are the u and U band, where an excess lag is observed, as has been observed in other AGN and attributed to continuum emission arising in the broad-line region. Furthermore, we perform a flux-flux analysis to separate the constant and variable components of the spectral energy distribution, finding that the flux-dependence of the variable component is consistent with the $f_ upropto u^{1/3}$ spectrum expected for a geometrically-thin accretion disk. Moreover, the X-ray to UV lag is significantly offset from an extrapolation of the UV/optical trend, with the X-rays showing a poorer correlation with the UV than the UV does with the optical. The magnitude of the UV/optical lags is consistent with a highly super-Eddington accretion rate.
157 - P. Du , C. Hu , K.-X. Lu 2013
We report first results from a large project to measure black hole (BH) mass in high accretion rate active galactic nuclei (AGNs). Such objects may be different from other AGNs in being powered by slim accretion disks and showing saturated accretion luminosities, but both are not yet fully understood. The results are part of a large reverberation mapping (RM) campaign using the 2.4-m Shangri-La telescope at the Yunnan Observatory in China. The goals are to investigate the gas distribution near the BH and the properties of the central accretion disks, to measure BH mass and Eddington ratios, and to test the feasibility of using such objects as a new type of cosmological candles. The paper presents results for three objects, Mrk 335, Mrk 142 and IRAS F12397+3333 with H$beta$ time lags relative to the 5100AA continuum of $10.6^{+1.7}_{-2.9}$, $6.4^{+0.8}_{-2.2}$ and $11.4^{+2.9}_{-1.9}$ days, respectively. The corresponding BH masses are $(8.3_{-3.2}^{+2.6})times 10^6M_{odot}$, $(3.4_{-1.2}^{+0.5})times 10^6M_{odot}$ and $(7.5_{-4.1}^{+4.3})times 10^6M_{odot}$, and the lower limits on the Eddington ratios 0.6, 2.3, and 4.6 for the minimal radiative efficiency of 0.038. Mrk 142 and IRAS F12397+333 (extinction corrected) clearly deviate from the currently known relation between H$beta$ lag and continuum luminosity. The three Eddington ratios are beyond the values expected in thin accretion disks and two of them are the largest measured so far among objects with RM-based BH masses. We briefly discuss implications for slim disks, BH growth and cosmology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا