ﻻ يوجد ملخص باللغة العربية
We present a simplified method for the extraction of meaningful signals from Hanford and Livingstone 32 seconds data for the GW150914 event made publicly available by the LIGO collaboration and demonstrate its ability to reproduce the LIGO collaborations own results quantitatively given the assumption that all narrow peaks in the power spectrum are a consequence of physically uninteresting signals and can be removed. After the clipping of these peaks and return to the time domain, the GW150914 event is readily distinguished from broadband background noise. This simple technique allows us to identify the GW150914 event without any assumption regarding its physical origin and with minimal assumptions regarding its shape. We also confirm that the LIGO GW150914 event is uniquely correlated in the Hanford and Livingston detectors for 4096 second data at the level of $6-7,sigma$ with a temporal displacement of $tau=6.9 pm 0.4,$ms. We have also identified a few events that are morphologically close to GW150914 but less strongly cross correlated with it.
We report initial results of a deep search for an optical counterpart to the gravitational wave event GW150914, the first trigger from the Advanced LIGO gravitational wave detectors. We used the Dark Energy Camera (DECam) to image a 102 deg$^2$ area,
The Fermi Large Area Telescope (LAT) has an instantaneous field of view covering $sim 1/5$ of the sky and completes a survey of the full sky every ~3 hours. It provides a continuous, all-sky survey of high-energy gamma-rays, enabling searches for tra
With an instantaneous view of 70% of the sky, the Fermi Gamma-ray Burst Monitor (GBM) is an excellent partner in the search for electromagnetic counterparts to gravitational wave (GW) events. GBM observations at the time of the Laser Interferometer G
The detection of the first gravitational wave (GW) transient GW150914 prompted an extensive campaign of follow-up observations at all wavelengths. Although no dedicated XMM-Newton observations have been performed, the satellite passed through the GW1
Supplemental information for a Letter reporting the rate of binary black hole (BBH) coalescences inferred from 16 days of coincident Advanced LIGO observations surrounding the transient gravitational wave signal GW150914. In that work we reported var