ترغب بنشر مسار تعليمي؟ اضغط هنا

Point process models for spatio-temporal distance sampling data from a large-scale survey of blue whales

91   0   0.0 ( 0 )
 نشر من قبل Yuan Yuan
 تاريخ النشر 2016
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Distance sampling is a widely used method for estimating wildlife population abundance. The fact that conventional distance sampling methods are partly design-based constrains the spatial resolution at which animal density can be estimated using these methods. Estimates are usually obtained at survey stratum level. For an endangered species such as the blue whale, it is desirable to estimate density and abundance at a finer spatial scale than stratum. Temporal variation in the spatial structure is also important. We formulate the process generating distance sampling data as a thinned spatial point process and propose model-based inference using a spatial log-Gaussian Cox process. The method adopts a flexible stochastic partial differential equation (SPDE) approach to model spatial structure in density that is not accounted for by explanatory variables, and integrated nested Laplace approximation (INLA) for Bayesian inference. It allows simultaneous fitting of detection and density models and permits prediction of density at an arbitrarily fine scale. We estimate blue whale density in the Eastern Tropical Pacific Ocean from thirteen shipboard surveys conducted over 22 years. We find that higher blue whale density is associated with colder sea surface temperatures in space, and although there is some positive association between density and mean annual temperature, our estimates are consitent with no trend in density across years. Our analysis also indicates that there is substantial spatially structured variation in density that is not explained by available covariates.



قيم البحث

اقرأ أيضاً

Spatio-temporal point process models play a central role in the analysis of spatially distributed systems in several disciplines. Yet, scalable inference remains computa- tionally challenging both due to the high resolution modelling generally requir ed and the analytically intractable likelihood function. Here, we exploit the sparsity structure typical of (spatially) discretised log-Gaussian Cox process models by using approximate message-passing algorithms. The proposed algorithms scale well with the state dimension and the length of the temporal horizon with moderate loss in distributional accuracy. They hence provide a flexible and faster alternative to both non-linear filtering-smoothing type algorithms and to approaches that implement the Laplace method or expectation propagation on (block) sparse latent Gaussian models. We infer the parameters of the latent Gaussian model using a structured variational Bayes approach. We demonstrate the proposed framework on simulation studies with both Gaussian and point-process observations and use it to reconstruct the conflict intensity and dynamics in Afghanistan from the WikiLeaks Afghan War Diary.
Spatio-temporal data sets are rapidly growing in size. For example, environmental variables are measured with ever-higher resolution by increasing numbers of automated sensors mounted on satellites and aircraft. Using such data, which are typically n oisy and incomplete, the goal is to obtain complete maps of the spatio-temporal process, together with proper uncertainty quantification. We focus here on real-time filtering inference in linear Gaussian state-space models. At each time point, the state is a spatial field evaluated on a very large spatial grid, making exact inference using the Kalman filter computationally infeasible. Instead, we propose a multi-resolution filter (MRF), a highly scalable and fully probabilistic filtering method that resolves spatial features at all scales. We prove that the MRF matrices exhibit a particular block-sparse multi-resolution structure that is preserved under filtering operations through time. We also discuss inference on time-varying parameters using an approximate Rao-Blackwellized particle filter, in which the integrated likelihood is computed using the MRF. We compare the MRF to existing approaches in a simulation study and a real satellite-data application.
Event cameras, inspired by biological vision systems, provide a natural and data efficient representation of visual information. Visual information is acquired in the form of events that are triggered by local brightness changes. Each pixel location of the cameras sensor records events asynchronously and independently with very high temporal resolution. However, because most brightness changes are triggered by relative motion of the camera and the scene, the events recorded at a single sensor location seldom correspond to the same world point. To extract meaningful information from event cameras, it is helpful to register events that were triggered by the same underlying world point. In this work we propose a new model of event data that captures its natural spatio-temporal structure. We start by developing a model for aligned event data. That is, we develop a model for the data as though it has been perfectly registered already. In particular, we model the aligned data as a spatio-temporal Poisson point process. Based on this model, we develop a maximum likelihood approach to registering events that are not yet aligned. That is, we find transformations of the observed events that make them as likely as possible under our model. In particular we extract the camera rotation that leads to the best event alignment. We show new state of the art accuracy for rotational velocity estimation on the DAVIS 240C dataset. In addition, our method is also faster and has lower computational complexity than several competing methods.
131 - Duncan Lee , Andrew Lawson 2014
In epidemiological disease mapping one aims to estimate the spatio-temporal pattern in disease risk and identify high-risk clusters, allowing health interventions to be appropriately targeted. Bayesian spatio-temporal models are used to estimate smoo thed risk surfaces, but this is contrary to the aim of identifying groups of areal units that exhibit elevated risks compared with their neighbours. Therefore, in this paper we propose a new Bayesian hierarchical modelling approach for simultaneously estimating disease risk and identifying high-risk clusters in space and time. Inference for this model is based on Markov chain Monte Carlo simulation, using the freely available R package CARBayesST that has been developed in conjunction with this paper. Our methodology is motivated by two case studies, the first of which assesses if there is a relationship between Public health Districts and colon cancer clusters in Georgia, while the second looks at the impact of the smoking ban in public places in England on cardiovascular disease clusters.
This paper contributes to the multivariate analysis of marked spatio-temporal point process data by introducing different partial point characteristics and extending the spatial dependence graph model formalism. Our approach yields a unified framewor k for different types of spatio-temporal data including both, purely qualitatively (multivariate) cases and multivariate cases with additional quantitative marks. The proposed graphical model is defined through partial spectral density characteristics, it is highly computationally efficient and reflects the conditional similarity among sets of spatio-temporal sub-processes of either points or marked points with identical discrete marks. The paper considers three applications, two on crime data and a third one on forestry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا