ﻻ يوجد ملخص باللغة العربية
Atomic nanowires on semiconductor surfaces induced by the adsorption of metallic atoms have attracted a lot of attention as possible hosts of the elusive, Tomonaga-Luttinger liquid. The Au/Ge(100) system in particular is the subject of controversy as to whether the Au-induced nanowires do indeed host exotic, 1D metallic states. We report on a thorough study of the electronic properties of high quality nanowires formed at the Au/Ge(100) surface. High resolution ARPES data show the low-lying Au-induced electronic states to possess a dispersion relation that depends on two orthogonal directions in k-space. Comparison of the E(k$_x$,k$_y$) surface measured using ARPES to tight-binding calculations yields hopping parameters in the two different directions that differ by a factor of two. We find that the larger of the two hopping parameters corresponds, in fact, to the direction perpendicular to the nanowires (t$_{perp}$). This, the topology of the $E$=$E_F$ contour in k$_{||}$, and the fact that $t_{||}$/$t_{perp}sim 0.5$ proves that the Au-induced electron pockets possess a 2D, closed Fermi surface, this firmly places the Au/Ge(100) nanowire system outside being a potential hosts of a Tomonaga-Luttinger liquid. We combine these ARPES data with STS measurements of the spatially-resolved electronic structure and find that the spatially straight conduction channels observed up to energies of order one electron volt below the Fermi level do not originate from the Au-induced states seen in the ARPES data. The former are more likely to be associated with bulk Ge states that are localized to the subsurface region. Despite our proof of the 2D nature of the Au-induced nanowire and sub-surface Ge-related states, an anomalous suppression of the density of states at the Fermi level is observed in both the STS and ARPES data, this phenomenon is discussed in the light of the effects of disorder.
We report the effects of variation in length on the electronic structure of CdSe nanorods derived from atomic clusters and passivated by fictitious hydrogen atoms. These nanorods are augmented by attaching gold clusters at both the ends to form a nan
Electronic structures for InxGa1-xAs nanowires with [100], [110], and [111] orientations and critical dimensions of approximately 2 nm are treated within the framework of density functional theory. Explicit band structures are calculated and properti
In this paper an experimental study of the interaction of hydrogen molecules with gold nanowires is presented. Our results show, that chains of Au atoms can also be pulled in hydrogen environment, however in this case the conductance of the chain is
Networks of silicon nanowires possess intriguing electronic properties surpassing the predictions based on quantum confinement of individual nanowires. Employing large-scale atomistic pseudopotential computations, as yet unexplored branched nanostruc
Magnetic helix wire is one of the most simple magnetic systems which manifest properties of both curvature and torsion. There exist two equilibrium states in the helix wire with easy-tangential anisotropy: a quasi-tangential magnetization distributio