ﻻ يوجد ملخص باللغة العربية
Let B be a commutative Bezout domain B and let MSpec(B) be the maximal spectrum of B. We obtain a Feferman-Vaught type theorem for the class of B-modules. We analyse the definable sets in terms, on one hand, of the definable sets in the classes of modules over the localizations of B by the maximal ideals of B, and on the other hand, of the constructible subsets of MSpec(B). When B has good factorization, it allows us to derive decidability results for the class B-modules, in particular when B is the ring of algebraic integers or its intersection with real numbers or p-adic numbers.
We provide algebraic conditions ensuring the decidability of the theory of modules over effectively given Prufer (in particular Bezout) domains with infinite residue fields in terms of a suitable generalization of the prime radical relation. For B{e}zout domains these conditions are also necessary.
Let $R$ be a Bezout domain, and let $A,B,Cin R^{ntimes n}$ with $ABA=ACA$. If $AB$ and $CA$ are group invertible, we prove that $AB$ is similar to $CA$. Moreover, we have $(AB)^{#}$ is similar to $(CA)^{#}$. This generalize the main result of Cao and
This paper shows how to transform explosive many-valued systems into paraconsistent logics. We investigate especially the case of three-valued systems showing how paraconsistent three-valued logics can be obtained from them.
We introduce a class of theories called metastable, including the theory of algebraically closed valued fields (ACVF) as a motivating example. The key local notion is that of definable types dominated by their stable part. A theory is metastable (ove
The notion of a textbf{$boldsymbol{mathcal{C}}$-filtered} object, where $mathcal{C}$ is some (typically small) collection of objects in a Grothendieck category, has become ubiquitous since the solution of the Flat Cover Conjecture around the year 200