ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure tuning the Fermi-surface topology of the Weyl semimetal NbP

394   0   0.0 ( 0 )
 نشر من قبل Ricardo Dos Reis
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the pressure evolution of the Fermi surface topology of the Weyl semimetal NbP, probed by Shubnikov-de Haas oscillations in the magnetoresistance combined with ab-initio calculations of the band-structure. Although we observe a drastic effect on the amplitudes of the quantum oscillations, the frequencies only exhibit a weak pressure dependence up to 2.8 GPa. The pressure-induce variations in the oscillation frequencies are consistent with our band-structure calculations. Furthermore, we can relate the changes in the amplitudes to small modifications in the shape of the Fermi surface. Our findings evidenced the stability of the electronic band structure of NbP and demonstrate the power of combining quantum-oscillation studies and band-structure calculations to investigate pressure effects on the Fermi-surface topology in Weyl semimetals.

قيم البحث

اقرأ أيضاً

The Weyl semimetal NbP was found to exhibit topological Fermi arcs and exotic magneto-transport properties. Here, we report on magnetic quantum-oscillation measurements on NbP and construct the 3D Fermi surface with the help of band-structure calcula tions. We reveal a pair of spin-orbit-split electron pockets at the Fermi energy and a similar pair of hole pockets, all of which are strongly anisotropic. The Fermi surface well explains the linear magnetoresistance observed in high magnetic fields by the quantum-limit scenario. The Weyl points that are located in the $k_z approx pi/c$ plane are found to exist 5 meV above the Fermi energy. Therefore, we predict that the chiral anomaly effect can be realized in NbP by electron doping to drive the Fermi energy to the Weyl points.
As one of Weyl semimetals discovered recently, NbP exhibits two groups of Weyl points with one group lying inside the $k_z=0$ plane and the other group staying away from this plane. All Weyl points have been assumed to be type-I, for which the Fermi surface shrinks into a point as the Fermi energy crosses the Weyl point. In this work, we have revealed that the second group of Weyl points are actually type-II, which are found to be touching points between the electron and hole pockets in the Fermi surface. Corresponding Weyl cones are strongly tilted along a line approximately $17^circ$ off the $k_z$ axis in the $k_x - k_z$ (or $k_y - k_z$) plane, violating the Lorentz symmetry but still giving rise to Fermi arcs on the surface. Therefore, NbP exhibits both type-I ($k_z=0$ plane) and type-II ($k_z eq 0$ plane) Weyl points.
181 - J. Xu , D. E. Bugaris , Z. L. Xiao 2017
We report the occurrence of reentrant metallic behavior in the Weyl semimetal NbP. When the applied magnetic field $H$ is above a critical value $H_c$, a reentrance appears as a peak in the temperature dependent resistivity $rho_{xx}(T)$ at $T$ = $T_ p$, similar to that observed in graphite where it was attributed to local superconductivity. The $T_p(H)$ relationship follows a power-law dependence $T_psim(H-H_c)^{1/v}$ where $v$ can be derived from the temperature dependence of the zero-field resistivity $rho_0(T) sim T^v$. From concurrent measurements of the transverse $rho_{xx}(T)$ and Hall $rho_{xy}(T)$ magnetoresistivities, we reveal a clear correlation between the rapidly increasing $rho_{xy}(T)$ and the occurrence of a peak in the $rho_{xx}(T)$ curve. Quantitative analysis indicates that the reentrant metallic behavior arises from the competition of the magneto conductivity $sigma_{xx}(T)$ with an additional component $Deltasigma_{xx}(T)=kappa_Hsigma_{xx}(T)$ where $kappa_H=[rho_{xy}(T)/rho_{xx}(T)]^2$ is the Hall factor. We find that the Hall factor ($kappa_H approx 0.4$) at peak temperature $T_p$ is nearly field-independent, leading to the observed $T_p(H)$ relationship. Furthermore, the reentrant metallic behavior in $rho_{xx}(T)$ also is reflected in the behavior of $rho_{xx}(H)$ that ranges from non-saturating at $T>70$ K to saturation at liquid helium temperatures. The latter can be explained with the magnetic field dependence of the Hall factor $kappa_H(H)$. Our studies demonstrate that a semiclassical theory can account for the anomalies in the magnetotransport phenomena of NbP without invoking an exotic mechanism.
The Weyl semimetal NbP exhibits an extremely large magnetoresistance (MR) and an ultra-high mobility. The large MR originates from a combination of the nearly perfect compensation between electron- and hole-type charge carriers and the high mobility, which is relevant to the topological band structure. In this work we report on temperature- and field-dependent thermopower and thermal conductivity experiments on NbP. Additionally, we carried out complementary heat capacity, magnetization, and electrical resistivity measurements. We found a giant adiabatic magnetothermopower with a maximum of 800 $mu$V/K at 50 K in a field of 9 T. Such large effects have been observed rarely in bulk materials. We suggest that the origin of this effect might be related to the high charge-carrier mobility. We further observe pronounced quantum oscillations in both thermal conductivity and thermopower. The obtained frequencies compare well with our heat capacity and magnetization data.
Tantalum arsenide is a member of the non-centrosymmetric monopnictides, which are putative Weyl semimetals. In these materials, three-dimensional chiral massless quasiparticles, the so-called Weyl fermions, are predicted to induce novel quantum mecha nical phenomena, such as the chiral anomaly and topological surface states. However, their chirality is only well-defined if the Fermi level is close enough to the Weyl points that separate Fermi surface pockets of opposite chirality exist. In this article, we present the bulk Fermi surface topology of high quality single crystals of TaAs, as determined by angle-dependent Shubnikov-de Haas and de Haas-van Alphen measurements combined with ab-initio band-structure calculations. Quantum oscillations originating from three different types of Fermi surface pocket were found in magnetization, magnetic torque, and mag- netoresistance measurements performed in magnetic fields up to 14 T and temperatures down to 1.8 K. Of these Fermi pockets, two are pairs of topologically non-trivial electron pockets around the Weyl points and one is a trivial hole pocket. Unlike the other members of the non-centrosymmetric monopnictides, TaAs is the first Weyl semimetal candidate with the Fermi energy suffciently close to both types of Weyl points to generate chiral quasiparticles at the Fermi surface.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا