ترغب بنشر مسار تعليمي؟ اضغط هنا

How to reveal metastable skyrmionic spin structures by spin-polarized scanning tunneling microscopy

79   0   0.0 ( 0 )
 نشر من قبل Bertrand Dup\\'e
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We predict the occurrence of metastable skyrmionic spin structures such as antiskyrmions and higher-order skyrmions in ultra-thin transition-metal films at surfaces using Monte Carlo simulations based on a spin Hamiltonian parametrized from density functional theory calculations. We show that such spin structures will appear with a similar contrast in spin-polarized scanning tunneling microscopy (SP-STM) images. Both skyrmions and antiskyrmions display a circular shape for out-of-plane magnetized tips and a two-lobe butterfly contrast for in-plane tips. An unambiguous distinction can be achieved by rotating the tip magnetization direction without requiring the information of all components of the magnetization.

قيم البحث

اقرأ أيضاً

A simple, reliable method for preparation of bulk Cr tips for Scanning Tunneling Microscopy (STM) is proposed and its potentialities in performing high-quality and high-resolution STM and Spin Polarized-STM (SP-STM) are investigated. Cr tips show ato mic resolution on ordered surfaces. Contrary to what happens with conventional W tips, rest atoms of the Si(111)-7x7 reconstruction can be routinely observed, probably due to a different electronic structure of the tip apex. SP-STM measurements of the Cr(001) surface showing magnetic contrast are reported. Our results reveal that the peculiar properties of these tips can be suited in a number of STM experimental situations.
Using first-principles calculations based on density functional theory (DFT), we investigate the exchange interaction between a magnetic tip and a magnetic sample which is detected in magnetic exchange force microscopy (MExFM) and also occurs in spin -polarized scanning tunneling microscopy (SP-STM) experiments. As a model tip-sample system, we choose Fe tips and one monolayer Fe on W(001) which exhibits a checkerboard antiferromagnetic structure and has been previously studied with both SP-STM and MExFM. We calculate the exchange forces and energies as a function of tip-sample distance using different tip models ranging from single Fe atoms to Fe pyramids consisting of up to 14 atoms. We find that modelling the tip by a single Fe atom leads to qualitatively different tip-sample interactions than using clusters consisting of several atoms. Increasing the cluster size changes the calculated forces quantitatively enhancing the detectable exchange forces. Rotating the tip with respect to the surface unit cell has only a small influence on the tip-sample forces. Interestingly, the exchange forces on the tip atoms in the nearest and next-nearest layers from the apex atom are non-negligible and can be opposite to that on the apex atom for a small tip. In addition, the apex atom interacts not only with the surface atoms underneath but also with nearest-neighbors in the surface. We find that structural relaxations of tip and sample due to their interaction depend sensitively on the magnetic alignment of the two systems. As a result the onset of significant exchange forces is shifted towards larger tip-sample separations which facilitates their measurement in MExFM. At small tip-sample separations, structural relaxations of tip apex and surface atoms can either enhance or reduce the magnetic contrast measured in SP-STM
We consider the magnetic structure on the Fe(001) surface and theoretically study the scanning tunneling spectroscopy using a spin-polarized tip (SP-STM). We show that minority-spin surface states induce a strong bias dependence of the tunneling diff erential conductance which largely depends on the orientation of the magnetization in the SP-STM tip relative to the easy magnetization axis in the Fe(001) surface. We propose to use this effect in order to determine the spin character of the Fe(001) surface states. This technique can be applied also to other magnetic surfaces in which surface states are observed.
Tunneling magnetoresistance (TMR) in a vertical manganite junction was investigated by low-temperature scanning laser microscopy (LTSLM) allowing to determine the local relative magnetization M orientation of the two electrodes as a function of magni tude and orientation of the external magnetic field H. Sweeping the field amplitude at fixed orientation revealed magnetic domain nucleation and propagation in the junction electrodes. For the high-resistance state an almost single-domain antiparallel magnetization configuration was achieved, while in the low-resistance state the junction remained in a multidomain state. Calculated resistance $R_mathrm{calc}(H)$ based on the local M configuration obtained by LTSLM is in quantitative agreement with R(H) measured by magnetotransport.
As emerging topological nodal-line semimetals, the family of ZrSiX (X = O, S, Se, Te) has attracted broad interests in condensed matter physics due to their future applications in spintonics. Here, we apply a scanning tunneling microscopy (STM) to st udy the structural symmetry and electronic topology of ZrSiSe. The glide mirror symmetry is verified by quantifying the lattice structure of the ZrSe bilayer based on bias selective topographies. The quasiparticle interference analysis is used to identify the band structure of ZrSiSe. The nodal line is experimentally determined at $sim$ 250 meV above the Fermi level. An extra surface state Dirac point at $sim$ 400 meV below the Fermi level is also determined. Our STM measurement provides a direct experimental evidence of the nodal-line state in the family of ZrSiX.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا