ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling KIC10684673 and KIC12216817 as Single Pulsating Variables

43   0   0.0 ( 0 )
 نشر من قبل Garrison Turner
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The raw light curves of both KIC 10684673 and KIC 12216817 show variability. Both are listed in the Kepler Eclipsing Binary Catalog (hereafter KEBC), however both are flagged as uncertain in nature. In the present study we show their light curves can be modeled by considering each target as a single, multi-modal delta Scuti pulsator. While this does not exclude the possibility of eclipsing systems, we argue, while spectroscopy on the systems is still lacking, the delta Scuti model is a simpler explanation and therefore more probable.

قيم البحث

اقرأ أيضاً

We present some results of long term studies of pulsating stars conducted in the course of the OGLE and Araucaria projects. In particular very scarce eclipsing binaries containing pulsating stars are discussed. Such systems provide a unique opportuni ty to improve calibration of the cosmic distance scale and to better calibrate stellar evolutionary models.
98 - Santosh Joshi 2017
The combination of photometry, spectroscopy and spectropolarimetry of the chemically peculiar stars often aims to study the complex physical phenomena such as stellar pulsation, chemical inhomogeneity, magnetic field and their interplay with stellar atmosphere and circumstellar environment. The prime objective of the present study is to determine the atmospheric parameters of a set of Am stars to understand their evolutionary status. Atmospheric abundances and basic parameters are determined using full spectrum fitting technique by comparing the high-resolution spectra to the synthetic spectra. To know the evolutionary status we derive the effective temperature and luminosity from different methods and compare them with the literature. The location of these stars in the H-R diagram demonstrate that all the sample stars are evolved from the Zero-Age-Main-Sequence towards Terminal-Age-Main-Sequence and occupy the region of $delta$ Sct instability strip. The abundance analysis shows that the light elements e.g. Ca and Sc are underabundant while iron peak elements such as Ba, Ce etc. are overabundant and these chemical properties are typical for Am stars. The results obtained from the spectropolarimetric analysis shows that the longitudinal magnetic fields in all the studied stars are negligible that gives further support their Am class of peculiarity.
47 - E. Plachy , L. Molnar , R. Szabo 2016
In a few years the Kepler and TESS missions will provide ultra-precise photometry for thousands of RR Lyrae and hundreds of Cepheid stars. In the extended Kepler mission all targets are proposed in the Guest Observer (GO) Program, while the TESS spac e telescope will work with full frame images and a ~15-16th mag brightness limit with the possibility of short cadence measurements for a limited number of pre-selected objects. This paper highlights some details of the enormous and important work of the target selection process made by the members of Working Group 7 (WG#7) of the Kepler and TESS Asteroseismic Science Consortium.
The origin of the long secondary periods (LSPs) in red variables remains a mystery up to now, although there exist many models. The light curves of some LSPs stars mimic an eclipsing binary with a pulsating red giant component. To test this hypothesi s, the observational data of two LSP variable red giants, 77.7795.29 and 77.8031.42, discovered by the MACHO project from the LMC, are collected and analyzed. The probable eclipsing features of the light curves are simulated by the Wilson-Devinney (W-D) method. The simulation yields a contact and a semidetached geometry for the two systems, respectively. In addition, the pulsation constant of the main pulsating component in each binary system is derived. By combining the results of the binary model and the pulsation component, we investigate the feasibility of the pulsating binary model. It is found that the radial velocity curve expected from the binary model has a much larger amplitude than the observed one and a period double the observed one. Furthermore, the masses of the components based on the density derived from the binary orbit solution are too low to be compatible with both the evolutionary stage and the high luminosity. Although the pulsation mode identified by the pulsation constant which is dependent on the density from the binary-model is consistent with the first or second overtone radial pulsation, we conclude that the pulsating binary model is a defective model for the LSP.
Recently announced magnetic models for four SPB and {beta} Cep stars, along with magnetic detections for two additional stars, have potentially doubled the number of known magnetic SPB and beta Cep stars (see Grunhut et al., these proceedings). We ha ve reanalyzed the published data and re-reduced archival low resolution spectropolarimetry collected with the FORS1/2 instruments at VLT on which the models were based, and compare them with high resolution data from the ESPaDOnS spectropolarimeter at CFHT, investigating previously noted inconsistencies between results from the two instruments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا