ﻻ يوجد ملخص باللغة العربية
Average hard-tail X-ray emission in the soft state of nine bright Atoll low-mass X-ray binaries containing a neutron star (NS-LMXBs) are investigated by using the light curves of MAXI/GSC and Swift/BAT. Two sources (4U 1820$-$30 and 4U 1735$-$44) exhibit large hardness ratio (15--50 keV$/$2--10 keV: {it HR} $>$ 0.1), while the other sources distribute at {it HR} $ltsim$ 0.1. In either case, {it HR} does not depend on the 2--10 keV luminosity. Therefore the difference of {it HR} is due to the 15--50 keV luminosity, which is Comptonized emission. The Compton cloud is assumed to be around the neutron star. The size of the Compton cloud would affect the value of {it HR}. Although the magnetic field of NS-LMXB is weak, we could expect a larger Alfv{e}n radius than the innermost stable circular orbit or the neutron star radius in some sources. In such cases, the accretion inflow is stopped at the Alfv{e}n radius and would create relatively large Compton cloud. It would result in the observed larger Comptonized emission. By attributing the difference of the size of Compton cloud to the Alfv{e}n radius, we can estimate the magnetic fields of neutron star. The obtained lower/upper limits are consistent with the previous results.
Neutron star X-ray binaries emit a compact, optically thick, relativistic radio jet during low-luminosity, usually hard states, as Galactic black-hole X-ray binaries do. When radio emission is bright, a hard power-law tail without evidence for an exp
We report on unusually very hard spectral states in three confirmed neutron-star low-mass X-ray binaries (1RXS J180408.9-342058, EXO 1745-248, and IGR J18245-2452) at a luminosity between ~ 10^{36-37} erg s^{-1}. When fitting the Swift X-ray spectra
Here we study the rapid X-ray variability (using XMM-Newton observations) of three neutron-star low-mass X-ray binaries (1RXS J180408.9-342058, EXO 1745-248, and IGR J18245-2452) during their recently proposed very hard spectral state (Parikh et al.
Motivated by the large body of literature around the phenomenological properties of accreting black hole (BH) and neutron star (NS) X-ray binaries in the radio:X-ray luminosity plane, we carry out a comparative regression analysis on 36 BHs and 41 NS
The high-mass accreting binary Cyg X-3 is distinctly different from low-mass X-ray binaries (LMXBs) in having powerful radio and $gamma$-ray emitting jets in its soft spectral state. However, the transition from the hard state to the soft one is firs