ﻻ يوجد ملخص باللغة العربية
In this paper we propose a new framework for analyzing the performance of preprocessing algorithms. Our framework builds on the notion of kernelization from parameterized complexity. However, as opposed to the original notion of kernelization, our definitions combine well with approximation algorithms and heuristics. The key new definition is that of a polynomial size $alpha$-approximate kernel. Loosely speaking, a polynomial size $alpha$-approximate kernel is a polynomial time pre-processing algorithm that takes as input an instance $(I,k)$ to a parameterized problem, and outputs another instance $(I,k)$ to the same problem, such that $|I|+k leq k^{O(1)}$. Additionally, for every $c geq 1$, a $c$-approximate solution $s$ to the pre-processed instance $(I,k)$ can be turned in polynomial time into a $(c cdot alpha)$-approximate solution $s$ to the original instance $(I,k)$. Our main technical contribution are $alpha$-approximate kernels of polynomial size for three problems, namely Connected Vertex Cover, Disjoint Cycle Packing and Disjoint Factors. These problems are known not to admit any polynomial size kernels unless $NP subseteq coNP/poly$. Our approximate kernels simultaneously beat both the lower bounds on the (normal) kernel size, and the hardness of approximation lower bounds for all three problems. On the negative side we prove that Longest Path parameterized by the length of the path and Set Cover parameterized by the universe size do not admit even an $alpha$-approximate kernel of polynomial size, for any $alpha geq 1$, unless $NP subseteq coNP/poly$. In order to prove this lower bound we need to combine in a non-trivial way the techniques used for showing kernelization lower bounds with the methods for showing hardness of approximation
In this work, we study the $k$-median clustering problem with an additional equal-size constraint on the clusters, from the perspective of parameterized preprocessing. Our main result is the first lossy ($2$-approximate) polynomial kernel for this pr
A fundamental theorem of Whitney from 1933 asserts that 2-connected graphs G and H are 2-isomorphic, or equivalently, their cycle matroids are isomorphic, if and only if G can be transformed into H by a series of operations called Whitney switches. I
We study the algorithmic properties of the graph class Chordal-ke, that is, graphs that can be turned into a chordal graph by adding at most k edges or, equivalently, the class of graphs of fill-in at most k. We discover that a number of fundamental
The three-in-a-tree problem asks for an induced tree of the input graph containing three mandatory vertices. In 2006, Chudnovsky and Seymour [Combinatorica, 2010] presented the first polynomial time algorithm for this problem, which has become a crit
We give a polynomial time algorithm for the lossy population recovery problem. In this problem, the goal is to approximately learn an unknown distribution on binary strings of length $n$ from lossy samples: for some parameter $mu$ each coordinate of