ترغب بنشر مسار تعليمي؟ اضغط هنا

Remarkable magnetostructural coupling around the magnetic transition in CeCo$_{0.85}$Fe$_{0.15}$Si

44   0   0.0 ( 0 )
 نشر من قبل V\\'ictor Correa
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a detailed study of the magnetic properties of CeCo$_{0.85}$Fe$_{0.15}$Si under high magnetic fields (up to 16 Tesla) measuring different physical properties such as specific heat, magnetization, electrical resistivity, thermal expansion and magnetostriction. CeCo$_{0.85}$Fe$_{0.15}$Si becomes antiferromagnetic at $T_N approx$ 6.7 K. However, a broad tail (onset at $T_X approx$ 13 K) in the specific heat precedes that second order transition. This tail is also observed in the temperature derivative of the resistivity. However, it is particularly noticeable in the thermal expansion coefficient where it takes the form of a large bump centered at $T_X$. A high magnetic field practically washes out that tail in the resistivity. But surprisingly, the bump in the thermal expansion becomes a well pronounced peak fully split from the magnetic transition at $T_N$. Concurrently, the magnetoresistance also switches from negative to positive just below $T_X$. The magnetostriction is considerable and irreversible at low temperature ($frac {Delta L}{L} left(16 Tright) sim$ 4$times$10$^{-4}$ at 2 K) when the magnetic interactions dominate. A broad jump in the field dependence of the magnetostriction observed at low $T$ may be the signature of a weak ongoing metamagnetic transition. Taking altogether, the results indicate the importance of the lattice effects in the development of the magnetic order in these alloys.



قيم البحث

اقرأ أيضاً

We present a phenomenological analysis of the magnetoelastic properties of CeCo$_{0.85}$Fe$_{0.15}$Si at temperatures close to the Neel transition temperature $T_N$. Using a Landau functional we provide a qualitative description of the thermal expans ion, magnetostriction, magnetization and specific heat data. We show that the available experimental results [Journal of Physics: Condensed Matter 28 346003 (2016)] are consistent with the presence of a structural transition at $T_sgtrsim T_N$ and a strong magnetoelastic coupling. The magnetoelastic coupling presents a Janus-faced effect: while the structural transition is shifted to higher temperatures as the magnetic field is increased, the resulting striction at low temperatures decreases. The strong magnetoelastic coupling and the proximity of the structural transition to the onset temperature for magnetic fluctuations, suggest that the transition could be an analogue of the tetragonal to orthorhombic observed in Fe-based pcnictides.
Structural, magnetic and thermal measurements performed on CeCo{1-x}Fe{x}Si alloys are reported. Three regions can be recognized: i) Co-rich (x < 0.20) with a decreasing long range antiferromagnetic order which vanishes at finite temperature, ii) an intermediate region (0.20 < x < 0.30) showing a broad magnetic anomaly (C_A) in specific heat and iii) the non-magnetic region progressively changing from a non-Fermi-liquid type behavior towards a Fermi liquid one as Fe concentration increases. The C_A anomaly emerges as an incipient contribution above T_N already at x = 0.10, which indicates that this contribution is related to short range correlations likely of quasi-two dimensional type. Both, T_N transition and C_A anomaly are practically not affected by applied magnetic field up to B ~ 10 Tesla.
84 - P. Dutta , S. Pramanick , D. Das 2016
Magnetic and magneto-functional behavior of a Fe-doped MnNiGe alloy with nominal composition Mn$_{0.85}$Fe$_{0.15}$NiGe have been investigated in ambient as well as in high pressure condition. The alloy undergoes first order martensitic phase transit ion (MPT) around 200 K and also shows large conventional magnetocaloric effect (MCE) ($Delta S$ $sim$ -21 J/kg-K for magnetic field ($H$) changing from 0-50 kOe) around the transition in ambient condition. Application of external hydrostatic pressure ($P$) results a shift in MPT towards the lower temperature and a clear decrease in the saturation moment of the alloy at 5 K. The peak value of MCE is also found to decrease with increasing external $P$ ($sim$ 18 J/kg-K decrease in $Delta S$ has been observed for $P$ = 12.5 kbar). The most interesting observation is the occurance of exchange bias effect (EBE) on application of external $P$. The competing ferromagnetic and antiferromagnetic interaction in presence of external $P$ plays the pivotal role towards the observation of $P$ induced EBE.
The magnetic and ferroelectric properties of the multiferroic system Mn$_{1-x}$Co$_x$WO$_4$ (x=0.135, 0.15, and 0.17) are studied in magnetic fields $H_c$ oriented along the monoclinic $c$-axis. Mn$_{0.85}$Co$_{0.15}$WO$_4$, which is right at the pha se boundary between two helical spin structures, exhibits a spontaneous sign change of the ferroelectric polarization when cooled in fields $H_c>$ 25 kOe. The origin of the ferroelectric polarization is studied and two magnetic exchange interactions contributing to the polarization are identified. In Mn$_{0.85}$Co$_{0.15}$WO$_4$ domains of the characteristic helical spin structures, known for x$<$0.15 and x$>$0.15, coexist and form domain boundaries. The contributions of the different domains to the global polarization are determined. The polarization reversal in Mn$_{0.85}$Co$_{0.15}$WO$_4$ can be explained by a combination of various contributions to the polarization and a strong correlation between magnetic domains of different helical spin orders resulting in a smooth transition across the domain walls which preserves the chirality of the spin spiral.
A very strong magnetoelastic effect in the CeCo$_{1-x}$Fe$_{x}$Si alloys is reported. The strength of the magnetostrictive effect can be tuned upon changing $x$. The moderate low-temperature linear magnetostriction observed at low Fe concentrations b ecomes very large ($frac {Delta L}{L} left(16 T,2 Kright) =$ 3$times$10$^{-3}$) around the critical concentration ($x_c approx$ 0.23) at which the long-range antiferromagnetic order vanishes. Upon increasing doping through the non-magnetic region ($x > x_c$), the magnetostriction strength gradually weakens again. Remarkably the low-temperature magnetostriction at the critical concentration shows a pronounced $S$-like shape (centered at $B_m sim$ 6 T) resembling other well-known Ce-based metamagnetic systems like CeRu$_2$Si$_2$ and CeTiGe. Unlike what is observed in these compounds, however, the field dependence of the magnetization shows only a minor upturn around $B_m$ vaguely resembling a metamagnetic behavior. The subtle interplay between magnetic order and the Kondo screening seems to originate an enhanced valence susceptibility slightly changing the Ce ions valence, ultimately triggering the large magnetostriction observed around the critical concentration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا