ترغب بنشر مسار تعليمي؟ اضغط هنا

Extrasolar comets : the origin of dust in exozodiacal disks?

100   0   0.0 ( 0 )
 نشر من قبل Marboeuf Ulysse
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Comets have been invoked in numerous studies as a potentially important source of dust and gas around stars, but none has studied the thermo-physical evolution, out-gassing rate, and dust ejection of these objects in such stellar systems. We investigate the thermo-physical evolution of comets in exo-planetary systems in order to provide valuable theoretical data required to interpret observations of gas and dust. We use a quasi 3D model of cometary nucleus to study the thermo-physical evolution of comets evolving around a single star from 0.1 to 50 AU, whose homogeneous luminosity varies from 0.1 to 70 solar luminosities. This paper provides mass ejection, lifetimes, and the rate of dust and water gas mass productions for comets as a function of the distance to the star and stellar luminosity. Results show significant physical changes to comets at high stellar luminosities. The models are presented in such a manner that they can be readily applied to any planetary system. By considering the examples of the Solar System, Vega and HD 69830, we show that dust grains released from sublimating comets have the potential to create the observed (exo)zodiacal emission. We show that observations can be reproduced by 1 to 2 massive comets or by a large number of comets whose orbits approach close to the star. Our conclusions depend on the stellar luminosity and the uncertain lifetime of the dust grains. We find, as in previous studies, that exozodiacal dust disks can only survive if replenished by a population of typically sized comets renewed from a large and cold reservoir of cometary bodies beyond the water ice line. These comets could reach the inner regions of the planetary system following scattering by a (giant) planet.

قيم البحث

اقرأ أيضاً

Since very recently, we acquired knowledge on the existence of comets in extrasolar planetary systems. The formation of comets together with planets around host stars now seems evident. As stars are often born in clusters of interstellar clouds, the interaction between the systems will lead to the exchange of material at the edge of the clouds. Therefore, almost every planetary system should have leftover remnants as a result of planetary formation in form of comets at the edges of those systems. These Oort clouds around stars are often disturbed by different processes (e.g., galactic tides, passing stars, etc.), which consequently scatter bodies from the distant clouds into the system close to the host star. Regarding the Solar System, we observe this outcome in the form of cometary families. This knowledge supports the assumption of the existence of comets around other stars. In the present work, we study the orbital dynamics of hypothetical exocomets, based on detailed computer simulations, in three star-planet systems, which are: HD~10180, 47~UMa, and HD~141399. These systems host one or more Jupiter-like planets, which change the orbits of the incoming comets in characteristic ways.
The Wide Field Infrared Survey Telescope (WFIRST) Coronagraph Instrument (CGI) will be the first high-performance stellar coronagraph using active wavefront control for deep starlight suppression in space, providing unprecedented levels of contrast, spatial resolution, and sensitivity for astronomical observations in the optical. One science case enabled by the CGI will be taking images and(R~50)spectra of faint interplanetary dust structures present in the habitable zone of nearby sunlike stars (~10 pc) and within the snow-line of more distant ones(~20pc), down to dust density levels commensurate with that of the solar system zodiacal cloud. Reaching contrast levels below~10-7 for the first time, CGI will cross an important threshold in debris disks physics, accessing disks with low enough optical depths that their structure is dominated by transport phenomena than collisions. Hence, CGI results will be crucial for determining how exozodiacal dust grains are produced and transported in low-density disks around mature stars. Additionally, CGI will be able to measure the brightness level and constrain the degree of asymmetry of exozodiacal clouds around individual nearby sunlike stars in the optical, at the ~10x solar zodiacal emission level. This information will be extremely valuable for optimizing the observational strategy of possible future exo-Earth direct imaging missions, especially those planning to operate at optical wavelengths, such as Habitable Exoplanet Observatory (HabEx) and the Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR).
[abridged] The presence of large amounts of dust in the habitable zones of nearby stars is a significant obstacle for future exo-Earth imaging missions. We executed an N band nulling interferometric survey to determine the typical amount of such exoz odiacal dust around a sample of nearby main sequence stars. The majority of our data have been analyzed and we present here an update of our ongoing work. We find seven new N band excesses in addition to the high confidence confirmation of three that were previously known. We find the first detections around Sun-like stars and around stars without previously known circumstellar dust. Our overall detection rate is 23%. The inferred occurrence rate is comparable for early type and Sun-like stars, but decreases from 71% [+11%/-20%] for stars with previously detected mid- to far-infrared excess to 11% [+9%/-4%] for stars without such excess, confirming earlier results at high confidence. For completed observations on individual stars, our sensitivity is five to ten times better than previous results. Assuming a lognormal luminosity function of the dust, we find upper limits on the median dust level around all stars without previously known mid to far infrared excess of 11.5 zodis at 95% confidence level. The corresponding upper limit for Sun-like stars is 16 zodis. An LBTI vetted target list of Sun-like stars for exo-Earth imaging would have a corresponding limit of 7.5 zodis. We provide important new insights into the occurrence rate and typical levels of habitable zone dust around main sequence stars. Exploiting the full range of capabilities of the LBTI provides a critical opportunity for the detailed characterization of a sample of exozodiacal dust disks to understand the origin, distribution, and properties of the dust.
Excess emission, associated with warm, dust belts, commonly known as exozodis, has been observed around a third of nearby stars. The high levels of dust required to explain the observations are not generally consistent with steady-state evolution. A common suggestion is that the dust results from the aftermath of a dynamical instability, an event akin to the Solar Systems Late Heavy Bombardment. In this work, we use a database of N-body simulations to investigate the aftermath of dynamical instabilities between giant planets in systems with outer planetesimal belts. We find that, whilst there is a significant increase in the mass of material scattered into the inner regions of the planetary system following an instability, this is a short-lived effect. Using the maximum lifetime of this material, we determine that even if every star has a planetary system that goes unstable, there is a very low probability that we observe more than a maximum of 1% of sun-like stars in the aftermath of an instability, and that the fraction of planetary systems currently in the aftermath of an instability is more likely to be limited to <0.06. This probability increases marginally for younger or higher mass stars. We conclude that the production of warm dust in the aftermath of dynamical instabilities is too short-lived to be the dominant source of the abundantly observed exozodiacal dust.
Exozodiacal dust is warm or hot dust found in the inner regions of planetary systems orbiting main sequence stars, in or around their habitable zones. The dust can be the most luminous component of extrasolar planetary systems, but predominantly emit s in the near- to mid-infrared where it is outshone by the host star. Interferometry provides a unique method of separating this dusty emission from the stellar emission. The visitor instrument PIONIER at the Very Large Telescope Interferometer (VLTI) has been used to search for hot exozodiacal dust around a large sample of nearby main sequence stars. The results of this survey are summarised: 9 out of 85 stars show excess exozodiacal emission over the stellar photospheric emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا