ﻻ يوجد ملخص باللغة العربية
Magnetic clouds (MCs) are the interplanetary counterpart of coronal magnetic flux ropes. They can provide valuable information to reveal the flux rope characteristics at their eruption stage in the corona, which are unable to be explored in situ at present. In this paper, we make a comprehensive survey of the average iron charge state (<Q>Fe) distributions inside 96 MCs for solar cycle 23 using ACE (Advanced Composition Explorer) data. As the <Q>Fe in the solar wind are typically around 9+ to 11+, the Fe charge state is defined as high when the <Q>Fe is larger than 12+, which implies the existence of a considerable amount of Fe ions with high charge states (e.g., geq 16+). The statistical results show that the <Q>Fe distributions of 92 (~ 96%) MCs can be classified into four groups with different characteristics. In group A (11 MCs), the <Q>Fe shows a bimodal distribution with both peaks higher than 12+. Group B (4 MCs) presents a unimodal distribution of <Q>Fe with its peak higher than 12+. In groups C (29 MCs) and D (48 MCs), the <Q>Fe remains higher and lower than 12+ throughout ACE passage through the MC, respectively. Possible explanations to these distributions are discussed.
Similar to the Sun, other stars shed mass and magnetic flux via ubiquitous quasi-steady wind and episodic stellar coronal mass ejections (CMEs). We investigate the mass loss rate via solar wind and CMEs as a function of solar magnetic variability rep
Large solar flares and eruptions may influence remote regions through perturbations in the outer-atmospheric magnetic field, leading to causally related events outside of the primary or triggering eruptions that are referred to as sympathetic events.
We analyze in situ measurements of solar wind velocity obtained by the Advanced Composition Explorer (ACE) spacecraft during the solar activity cycle 23. We calculated a robust complexity measure, the permutation entropy (S) of solar wind time series
The Suns polar magnetic fields change their polarity near the maximum of sunspot activity. We analyzed the polarity reversal epochs in Solar Cycles 21 to 24. There was a triple reversal in the N-hemisphere in Solar Cycle 24 and single reversals in th
This review article summarizes the advancement in the studies of Earth-affecting solar transients in the last decade that encompasses most of solar cycle 24. The Sun Earth is an integrated physical system in which the space environment of the Earth s