ﻻ يوجد ملخص باللغة العربية
A central feature of the Periodic Anderson Model is the competition between antiferromagnetism, mediated by the Ruderman-Kittel-Kasuya-Yosida interaction at small conduction electron-local electron hybridization $V$, and singlet formation at large $V$. At zero temperature, and in dimension $d>1$, these two phases are separated by a quantum critical point $V_c$. We use Quantum Monte Carlo simulations to explore the effect of impurities which have a local hybridization $V_{*} < V_c$ in the AF regime which are embedded in a bulk singlet phase with $V > V_c$. We measure the suppression of singlet correlations and the antiferromagnetic correlations which form around the impurity, as well as the size of the resulting domain. Our calculations agree qualitatively with NMR measurements in CeCoIn$_{5-x}$Cd$_x$.
Heavy fermion compounds consisting of two or more inequivalent local moment sites per unit cell have been a promising platform of investigating the interplay between distinct Kondo screenings that is absent in the conventional systems containing only
We study the zero-bandwidth limit of the two-impurity Anderson model in an antiferromagnetic (AF) metal. We calculate, for different values of the model parameters, the lowest excitation energy, the magnetic correlation $<mathbf{S}_{1}mathbf{S}_{2}>$
Recently, dynamical mean field theory calculations have shown that kinks emerge in the real part of the self energy of strongly correlated metals close to the Fermi level. This gives rise to a similar behavior in the quasi-particle dispersion relatio
The Kondo and Periodic Anderson Model (PAM) are known to provide a microscopic picture of many of the fundamental properties of heavy fermion materials and, more generally, a variety of strong correlation phenomena in $4f$ and $5f$ systems. In this p
We investigate static and dynamical ground-state properties of the two-impurity Anderson model at half filling in the limit of vanishing impurity separation using the dynamical density-matrix renormalization group method. In the weak-coupling regime,