ﻻ يوجد ملخص باللغة العربية
We perform hole burning with a low drift stabilized laser within the zero phonon line of the 4f-5d transition in Ce$^{3+}$:Y$_2$SiO$_5$ at 2K. The narrowest spectral holes appear for small applied magnetic fields and are $6pm4$ MHz wide (FWHM). This puts an upper bound on the homogeneous linewidth of the transition to $3pm2$ MHz, which is close to lifetime limited. The spin level relaxation time is measured to $72pm21$ ms with a magnetic field of 10 mT. A slow permanent hole burning mechanism is observed. If the excitation frequency is not changed the fluorescence intensity is reduced by more than 50$%$ after a couple of minutes of continuous excitation. The spectral hole created by the permanent hole burning has a width in the tens of MHz range, which indicates that a trapping mechanism occurs via the 5d-state.
We experimentally study a broadband implementation of the atomic frequency comb (AFC) rephasing protocol with a cryogenically cooled Pr$^{3+}$:Y$_2$SiO$_5$ crystal. To allow for storage of broadband pulses, we explore a novel regime where the input p
We present and analyze four frequency measurements designed to characterize the performance of an optical frequency reference based on spectral hole burning in EuYSO. The first frequency comparison, between a single unperturbed spectral hole and a hy
Interfacing photonic and solid-state qubits within a hybrid quantum architecture offers a promising route towards large scale distributed quantum computing. In that respect, hybrid quantum systems combining circuit QED with ions doped into solids are
Er:YSO crystal is promising candidate with great variety of its potential applications in quantum information processing and quantum communications ranging from optical/microwave quantum memories to circuit QED and microwave-to-optics frequency conve
Efficient optical pumping is an important tool for state initialization in quantum technologies, such as optical quantum memories. In crystals doped with Kramers rare-earth ions, such as erbium and neodymium, efficient optical pumping is challenging