ترغب بنشر مسار تعليمي؟ اضغط هنا

MIGA: Combining laser and matter wave interferometry for mass distribution monitoring and advanced geodesy

66   0   0.0 ( 0 )
 نشر من قبل Benjamin Canuel
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Matter-Wave laser Interferometer Gravitation Antenna, MIGA, will be a hybrid instrument composed of a network of atom interferometers horizontally aligned and interrogated by the resonant field of an optical cavity. This detector will provide measurements of sub Hertz variations of the gravitational strain tensor. MIGA will bring new methods for geophysics for the characterization of spatial and temporal variations of the local gravity field and will also be a demonstrator for future low frequency Gravitational Wave (GW) detections. MIGA will enable a better understanding of the coupling at low frequency between these different signals. The detector will be installed underground in Rustrel (FR), at the Laboratoire Souterrain Bas Bruit (LSBB), a facility with exceptionally low environmental noise and located far away from major sources of anthropogenic disturbances. We give in this paper an overview of the operating mode and status of the instrument before detailing simulations of the gravitational background noise at the MIGA installation site.



قيم البحث

اقرأ أيضاً

122 - R. Geiger , L. Amand , A. Bertoldi 2015
The MIGA project aims at demonstrating precision measurements of gravity with cold atom sensors in a large scale instrument and at studying the associated applications in geosciences and fundamental physics. The first stage of the project (2013-2018) will consist in building a 300-meter long optical cavity to interrogate atom interferometers and will be based at the low noise underground laboratory LSBB in Rustrel, France. The second stage of the project (2018-2023) will be dedicated to science runs and data analyses in order to probe the spatio-temporal structure of the local gravity field of the LSBB region, a site of high hydrological interest. MIGA will also assess future potential applications of atom interferometry to gravitational wave detection in the frequency band $sim 0.1-10$ Hz hardly covered by future long baseline optical interferometers. This paper presents the main objectives of the project, the status of the construction of the instrument and the motivation for the applications of MIGA in geosciences. Important results on new atom interferometry techniques developed at SYRTE in the context of MIGA and paving the way to precision gravity measurements are also reported.
We demonstrate Ramsey-Borde (RB) atom interferometry for high performance laser stabilization with fractional frequency instability $<2 times 10^{-16}$ for timescales between 10 and 1000s. The RB spectroscopy laser interrogates two counterpropagating $^{40}$Ca beams on the $^1$S$_0$ -- $^3$P$_1$ transition at 657 nm, yielding 1.6 kHz linewidth interference fringes. Fluorescence detection of the excited state population is performed on the (4s4p) $^3$P$_1$ -- (4p$^2$) $^3$P$_0$ transition at 431 nm. Minimal thermal shielding and no vibration isolation are used. These stability results surpass performance from other thermal atomic or molecular systems by one to two orders of magnitude, and further improvements look feasible.
Very Long Baseline Atom Interferometry (VLBAI) corresponds to ground-based atomic matter-wave interferometry on large scales in space and time, letting the atomic wave functions interfere after free evolution times of several seconds or wave packet s eparation at the scale of meters. As inertial sensors, e.g., accelerometers, these devices take advantage of the quadratic scaling of the leading order phase shift with the free evolution time to enhance their sensitivity, giving rise to compelling experiments. With shot noise-limited instabilities better than $10^{-9}$ m/s$^2$ at 1 s at the horizon, VLBAI may compete with state-of-the-art superconducting gravimeters, while providing absolute instead of relative measurements. When operated with several atomic states, isotopes, or species simultaneously, tests of the universality of free fall at a level of parts in $10^{13}$ and beyond are in reach. Finally, the large spatial extent of the interferometer allows one to probe the limits of coherence at macroscopic scales as well as the interplay of quantum mechanics and gravity. We report on the status of the VLBAI facility, its key features, and future prospects in fundamental science.
We describe the realization and characterization of a compact, autonomous fiber laser system that produces the optical frequencies required for laser cooling, trapping, manipulation, and detection of $^{87}$Rb atoms - a typical atomic species for eme rging quantum technologies. This device, a customized laser system from the Muquans company, is designed for use in the challenging operating environment of the Laboratoire Souterrain `{a} Bas Bruit (LSBB) in France, where a new large scale atom interferometer is being constructed underground - the MIGA antenna. The mobile bench comprises four frequency-agile C-band Telecom diode lasers that are frequency doubled to 780 nm after passing through high-power fiber amplifiers. The first laser is frequency stabilized on a saturated absorption signal via lock-in amplification, which serves as an optical frequency reference for the other three lasers via optical phase-locked loops. Power and polarization stability are maintained through a series of custom, flexible micro-optic splitter/combiners that contain polarization optics, acousto-optic modulators, and shutters. Here, we show how the laser system is designed, showcasing qualities such as reliability, stability, remote control, and flexibility, while maintaining the qualities of laboratory equipment. We characterize the laser system by measuring the power, polarization, and frequency stability. We conclude with a demonstration using a cold atom source from the MIGA project and show that this laser system fulfills all requirements for the realization of the antenna.
156 - K.-P. Marzlin , B. C. Sanders , 2008
We establish a rigorous quantitative connection between (i) the interferometric duality relation for which-way information and fringe visibility and (ii) Heisenbergs uncertainty relation for position and modular momentum. We apply our theory to atom interferometry, wherein spontaneously emitted photons provide which way information, and unambiguously resolve the challenge posed by the metamaterial `perfect lens to complementarity and to the Heisenberg-Bohr interpretation of the Heisenberg microscope thought experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا