ترغب بنشر مسار تعليمي؟ اضغط هنا

A remark on a converse theorem of Cogdell and Piatetski-Shapiro

118   0   0.0 ( 0 )
 نشر من قبل Baiying Liu
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we reprove a global converse theorem of Cogdell and Piatetski-Shapiro using purely global methods.



قيم البحث

اقرأ أيضاً

84 - Nian Hong Zhou , Ya-Li Li 2021
Let $kappa$ be a positive real number and $minmathbb{N}cup{infty}$ be given. Let $p_{kappa, m}(n)$ denote the number of partitions of $n$ into the parts from the Piatestki-Shapiro sequence $(lfloor ell^{kappa}rfloor)_{ellin mathbb{N}}$ with at most $ m$ times (repetition allowed). In this paper we establish asymptotic formulas of Hardy-Ramanujan type for $p_{kappa, m}(n)$, by employing a framework of asymptotics of partitions established by Roth-Szekeres in 1953, as well as some results on equidistribution.
81 - Igor Nikolaev 2020
We prove Faltings Finiteness Theorem using Rieffels classification of the noncommutative tori.
We show that every Fricke invariant meromorphic modular form for $Gamma_0(N)$ whose divisor on $X_0(N)$ is defined over $mathbb{Q}$ and supported on Heegner divisors and the cusps is a generalized Borcherds product associated to a harmonic Maass form of weight $1/2$. Further, we derive a criterion for the finiteness of the multiplier systems of generalized Borcherds products in terms of the vanishing of the central derivatives of $L$-function of certain weight $2$ newforms. We also prove similar results for twisted Borcherds products.
157 - Martin Mereb 2010
We compute the E-polynomials of a family of twisted character varieties by proving they have polynomial count, and applying a result of N. Katz on the counting functions. To compute the number of GF(q)-points of these varieties as a function of q, we used a formula of Frobenius. Our calculations made use of the character tables of Gl(n,q) and Sl(n,q), previously computed by J. A. Green and G. Lehrer, and a result of Hanlon on the Mobius function of a subposet of set-partitions. The Euler Characteristics of these character varieties are calculated with these polynomial.
163 - Z. Z. Wang , D. Zaffran 2009
We give a proof of the hard Lefschetz theorem for orbifolds that does not involve intersection homology. This answers a question of Fulton. We use a foliated version of the hard Lefschetz theorem due to El Kacimi.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا