ﻻ يوجد ملخص باللغة العربية
The results of a search for solar axions from the Korea Invisible Mass Search (KIMS) experiment at the Yangyang Underground Laboratory are presented. Low-energy electron-recoil events would be produced by conversion of solar axions into electrons via the axio-electric effect in CsI(Tl) crystals. Using data from an exposure of 34,596 $rm kg cdot days$, we set a 90 % confidence level upper limit on the axion-electron coupling, $g_{ae}$, of $1.39 times 10^{-11}$ for an axion mass less than 1 keV/$rm c^2$. This limit is lower than the indirect solar neutrino bound, and fully excludes QCD axions heavier than 0.48 eV/$rm c^2$ and 140.9 eV/$rm c^2$ for the DFSZ and KSVZ models respectively.
We present a search for low-mass ($leq 20 GeV/c^{2}$) weakly interacting massive particles(WIMPs), strong candidates of dark matter particles,using the low-background CsI(Tl) detector array of the Korea Invisible Mass Search (KIMS) experiment. With a
A search for axioelectric absorption of solar axions produced in the $ p + d rightarrow {^3rm{He}}+gamma~(5.5~ rm{MeV})$ reactions has been performed with a BGO detector placed in a low-background setup. A model-independent limit on an axion-nucleon
The Korea Invisible Mass Search(KIMS) experiment presents new limits on WIMP-nucleon cross section using the data from an exposure of 3409 kgd taken with low background CsI(Tl) crystals at Yangyang underground laboratory. The most stringent limit on
We have started the development of a detector system, sensitive to single photons in the eV energy range, to be suitably coupled to one of the CAST magnet ports. This system should open to CAST a window on possible detection of low energy Axion Like
We have searched for axions which could be produced in the solar core by exploiting their conversion to X rays in a strong laboratory magnetic field. The signature of the solar axion is an increase in the rate of the X rays detected in a magnetic hel