ﻻ يوجد ملخص باللغة العربية
The parquet decomposition of the self-energy into classes of diagrams, those associated with specific scattering processes, can be exploited for different scopes. In this work, the parquet decomposition is used to unravel the underlying physics of non-perturbative numerical calculations. We show the specific example of dynamical mean field theory (DMFT) and its cluster extensions (DCA) applied to the Hubbard model at half-filling and with hole doping: These techniques allow for a simultaneous determination of two-particle vertex functions and self-energies, and hence, for an essentially exact parquet decomposition at the single-site or at the cluster level. Our calculations show that the self-energies in the underdoped regime are dominated by spin scattering processes, consistent with the conclusions obtained by means of the fluctuation diagnostics approach [Phys. Rev. Lett. 114, 236402 (2015)]. However, differently from the latter approach, the parquet procedure displays important changes with increasing interaction: Even for relatively moderate couplings, well before the Mott transition, singularities appear in different terms, with the notable exception of the predominant spin-channel. We explain precisely how these singularities, which partly limit the utility of the parquet decomposition, and - more generally - of parquet-based algorithms, are never found in the fluctuation diagnostics procedure. Finally, by a more refined analysis, we link the occurrence of the parquet singularities in our calculations to a progressive suppression of charge fluctuations and the formation of an RVB state, which are typical hallmarks of a pseudogap state in DCA.
We exploit the parquet formalism to derive exact flow equations for the two-particle-reducible four-point vertices, the self-energy, and typical response functions, circumventing the reliance on higher-point vertices. This includes a concise, algebra
The correlated electronic structure of SrVO3 has been investigated by angle-resolved photoemission spectroscopy using in-situ prepared thin films. Pronounced features of band renormalization have been observed: a sharp kink ~60 meV below the Fermi le
We propose a systematic procedure for constructing effective models of strongly correlated materials. The parameters, in particular the on-site screened Coulomb interaction U, are calculated from first principles, using the GW approximation. We deriv
The LDA+DMFT method is a very powerful tool for gaining insight into the physics of strongly correlated materials. It combines traditional ab-initio density-functional techniques with the dynamical mean-field theory. The core aspects of the method ar
We investigate the antiferromagnetic insulating nature of Ca3FeRhO6 both experimentally and theoretically. Susceptibility measurements reveal a Neel temperature T_N = 20 K, and a magnetic moment of 5.3 muB/f. u., while Moessbauer spectroscopy strongl