ترغب بنشر مسار تعليمي؟ اضغط هنا

Odd viscosity in the quantum critical region of a holographic Weyl semimetal

339   0   0.0 ( 0 )
 نشر من قبل Ya-Wen Sun
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study odd viscosity in a holographic model of a Weyl semimetal. The model is characterised by a quantum phase transition from a topological semimetal to a trivial semimetal state. Since the model is axisymmetric in three spatial dimensions there are two independent odd viscosities. Both odd viscosity coefficients are non-vanishing in the quantum critical region and non-zero only due to the mixed axial gravitational anomaly. It is therefore a novel example in which the mixed axial gravitational anomaly gives rise to a transport coefficient at first order in derivatives at finite temperature. We also compute anisotropic shear viscosities and show that one of them violates the KSS bound. In the quantum critical region, the physics of viscosities as well as conductivities is governed by the quantum critical point.



قيم البحث

اقرأ أيضاً

Floquet states can be realized in quantum systems driven by continuous time-periodic perturbations. It is known that a state known as the Floquet Weyl semimetal can be realized when free Dirac fermions are placed in a rotating electric field. What wi ll happen if strong interaction is introduced to this system? Will the interaction wash out the characteristic features of Weyl semimetals such as the Hall response? Is there a steady state and what is its thermodynamic behavior? We answer these questions using AdS/CFT correspondence in the $mathcal{N}=2$ supersymmetric massless QCD in a rotating electric field in the large $N_c$ limit realizing the first example of a holographic Floquet state. In this limit, gluons not only mediate interaction, but also act as an energy reservoir and stabilize the nonequilibrium steady state (NESS). We obtain the electric current induced by a rotating electric field: In the high frequency region, the Ohms law is satisfied, while we recover the DC nonlinear conductivity at low frequency, which was obtained holographically in a previous work. The thermodynamic properties of the NESS, e.g., fluctuation-dissipation relation, is characterized by the effective Hawking temperature that is defined from the effective horizon giving a holographic meaning to the periodic thermodynamic concept. In addition to the strong (pump) rotating electric field, we apply an additional weak (probe) electric field in the spirit of the pump-probe experiments done in condensed matter experiments. Weak DC and AC probe analysis in the background rotating electric field shows Hall currents as a linear response, therefore the Hall response of Floquet Weyl semimetals survives at the strong coupling limit. We also find frequency mixed response currents, i.e., a heterodyning effect, characteristic to periodically driven Floquet systems.
88 - Junkun Zhao 2021
We study the effects of momentum relaxation on the holographic Weyl semimetal which exhibits a topological quantum phase transition between the Weyl semimetal phase and a topological trivial phase. The conservation of momentum in the field theory is broken by the axion fields in holography. The topological Weyl semimetal phase is characterized by a nontrivial anomalous Hall conductivity. We find that the critical value of the phase transition decreases when we increase the momentum relaxation strength up to a special value, above which it goes to zero. This indicates that the Weyl semimetal phase shrinks and finally disappears as the momentum relaxation strength is increased, which is consistent with the weakly coupled field theory predictions. We also study the behavior of transverse/longitudinal conductivities and low temperature dependence of the d.c.resistivities with respect to momentum relaxation strength.
Disordered non-interacting systems in sufficiently high dimensions have been predicted to display a non-Anderson disorder-driven transition that manifests itself in the critical behaviour of the density of states and other physical observables. Recen tly the critical properties of this transition have been extensively studied for the specific case of Weyl semimetals by means of numerical and renormalisation-group approaches. Despite this, the values of the critical exponents at such a transition in a Weyl semimetal are currently under debate. We present an independent calculation of the critical exponents using a two-loop renormalisation-group approach for Weyl fermions in $2-varepsilon$ dimensions and resolve controversies currently existing in the literature.
A holographic realization for ferromagnetic systems has been constructed. Owing to the holographic dictionary proposed on the basis of this realization, we obtained relevant thermodynamic quantities such as magnetization, magnetic susceptibility, and free energy. This holographic model reproduces the behavior of the mean field theory near the critical temperature. At low temperatures, the results automatically incorporate the contributions from spin wave excitations and conduction electrons.
We study the hydrodynamic excitations of backreacted holographic superfluids by computing the full set of quasinormal modes (QNMs) at finite momentum and matching them to the existing hydrodynamic theory of superfluids. Additionally, we analyze the b ehavior of the low-energy excitations in real frequency and complex momentum, going beyond the standard QNM picture. Finally, we carry out a novel type of study of the model by computing the support of the hydrodynamic modes across the phase diagram. We achieve this by determining the support of the corresponding QNMs on the different operators in the dual theory, both in complex frequency and complex momentum space. From the support, we are able to reconstruct the hydrodynamic dispersion relations using the hydrodynamic constitutive relations. Our analysis rules out a role-reversal phenomenon between first and second sound in this model, contrary to results obtained in a weakly coupled field theory framework.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا