ﻻ يوجد ملخص باللغة العربية
We report the operation of a cold-atom inertial sensor which continuously captures the rotation signal. Using a joint interrogation scheme, where we simultaneously prepare a cold-atom source and operate an atom interferometer (AI) enables us to eliminate the dead times. We show that such continuous operation improves the short-term sensitivity of AIs, and demonstrate a rotation sensitivity of $100 text{nrad.s}^{-1}.text{Hz}^{-1/2}$ in a cold-atom gyroscope of $11 text{cm}^2$ Sagnac area. We also demonstrate a rotation stability of $1 text{nrad.s}^{-1}$ at $10^4$ s of integration time, which establishes the record for atomic gyroscopes. The continuous operation of cold-atom inertial sensors will enable to benefit from the full sensitivity potential of large area AIs, determined by the quantum noise limit.
We report the operation of a cold-atom inertial sensor in a joint interrogation scheme, where we simultaneously prepare a cold-atom source and operate an atom interferometer in order to eliminate dead times. Noise aliasing and dead times are conseque
We have developed an atom interferometer providing a full inertial base. This device uses two counter-propagating cold-atom clouds that are launched in strongly curved parabolic trajectories. Three single Raman beam pairs, pulsed in time, are success
We present a horizontal gravity gradiometer atom interferometer for precision gravitational tests. The horizontal configuration is superior for maximizing the inertial signal in the atom interferometer from a nearby proof mass. In our device, we have
Cold-atom inertial sensors target several applications in navigation, geoscience and tests of fundamental physics. Reaching high sampling rates and high inertial sensitivities, obtained with long interrogation times, represents a challenge for these
The research on cold-atom interferometers gathers a large community of about 50 groups worldwide both in the academic and now in the industrial sectors. The interest in this sub-field of quantum sensing and metrology lies in the large panel of possib