ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal scaling for the spin-electricity conversion on surface states of topological insulators

78   0   0.0 ( 0 )
 نشر من قبل Yuki Shiomi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have investigated spin-electricity conversion on surface states of bulk-insulating topological insulator (TI) materials using a spin pumping technique. The sample structure is Ni-Fe|Cu|TI trilayers, in which magnetic proximity effects on the TI surfaces are negligibly small owing to the inserted Cu layer. Voltage signals produced by the spin-electricity conversion are clearly observed, and enhanced with decreasing temperature in line with the dominated surface transport at lower temperatures. The efficiency of the spin-electricity conversion is greater for TI samples with higher resistivity of bulk states and longer mean free path of surface states, consistent with the surface spin-electricity conversion.

قيم البحث

اقرأ أيضاً

The spin-momentum locking at the Dirac surface state of a topological insulator (TI) offers a distinct possibility of a highly efficient charge-to-spin current (C-S) conversion compared with spin Hall effects in conventional paramagnetic metals. For the development of TI-based spin current devices, it is essential to evaluate its conversion efficiency quantitatively as a function of the Fermi level EF position. Here we exemplify a coefficient of qICS to characterize the interface C-S conversion effect by using spin torque ferromagnetic resonance (ST-FMR) for (Bi1-xSbx)2Te3 thin films whose EF is tuned across the band gap. In bulk insulating conditions, interface C-S conversion effect via Dirac surface state is evaluated as nearly constant large values of qICS, reflecting that the qICS is inversely proportional to the Fermi velocity vF that is almost constant. However, when EF traverses through the Dirac point, the qICS is remarkably suppressed possibly due to the degeneracy of surface spins or instability of helical spin structure. These results demonstrate that the fine tuning of the EF in TI based heterostructures is critical to maximizing the efficiency using the spin-momentum locking mechanism.
Gapless surface states on topological insulators are protected from elastic scattering on non-magnetic impurities which makes them promising candidates for low-power electronic applications. However, for wide-spread applications, these states should remain coherent and significantly spin polarized at ambient temperatures. Here, we studied the coherence and spin-structure of the topological states on the surface of a model topological insulator, Bi2Se3, at elevated temperatures in spin and angle-resolved photoemission spectroscopy. We found an extremely weak broadening and essentially no decay of spin polarization of the topological surface state up to room temperature. Our results demonstrate that the topological states on surfaces of topological insulators could serve as a basis for room temperature electronic devices.
180 - F. Rost , R. Gupta , S. Sharma 2020
We derive the spin texture of a weak topological insulator via a supersymmetric approach that includes the roles of the bulk gap edge states and surface band bending. We find the spin texture can take one of four forms: (i) helical, (ii) hyperbolic, (iii) hedgehog, with spins normal to the Dirac-Weyl cone of the surface state, and (iv) hyperbolic hedgehog. Band bending determines the winding number in the case of a helical texture, and for all textures can be used to tune the spin texture polarization to zero. For the weak topological insulator SnTe, we show that inclusion of band bending is crucial to obtain the correct texture winding number for the (111) surface facet $Gamma$-point Dirac-Weyl cone. We argue that hedgehogs will be found only in low symmetry situations.
We construct the symmetric-gapped surface states of a fractional topological insulator with electromagnetic $theta$-angle $theta_{em} = frac{pi}{3}$ and a discrete $mathbb{Z}_3$ gauge field. They are the proper generalizations of the T-pfaffian state and pfaffian/anti-semion state and feature an extended periodicity compared with their of integer topological band insulators counterparts. We demonstrate that the surface states have the correct anomalies associated with time-reversal symmetry and charge conservation.
212 - Pengke Li , Ian Appelbaum 2016
Several recent experiments on three-dimensional topological insulators claim to observe a large charge current-induced non-equilibrium ensemble spin polarization of electrons in the helical surface state. We present a comprehensive criticism of such claims, using both theory and experiment: First, we clarify the interpretation of quantities extracted from these measurements by deriving standard expressions from a Boltzmann transport equation approach in the relaxation-time approximation at zero and finite temperature to emphasize our assertion that, despite high in-plane spin projection, obtainable current-induced ensemble spin polarization is minuscule. Second, we use a simple experiment to demonstrate that magnetic field-dependent open-circuit voltage hysteresis (identical to those attributed to current-induced spin polarization in topological insulator surface states) can be generated in analogous devices where current is driven through thin films of a topologically-trivial metal. This result *ipso facto* discredits the naive interpretation of previous experiments with TIs, which were used to claim observation of helicity, i.e. spin-momentum locking in the topologically-protected surface state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا