ﻻ يوجد ملخص باللغة العربية
As a promising paradigm to reduce both capital and operating expenditures, the cloud radio access network (C-RAN) has been shown to provide high spectral efficiency and energy efficiency. Motivated by its significant theoretical performance gains and potential advantages, C-RANs have been advocated by both the industry and research community. This paper comprehensively surveys the recent advances of C-RANs, including system architectures, key techniques, and open issues. The system architectures with different functional splits and the corresponding characteristics are comprehensively summarized and discussed. The state-of-the-art key techniques in C-RANs are classified as: the fronthaul compression, large-scale collaborative processing, and channel estimation in the physical layer; and the radio resource allocation and optimization in the upper layer. Additionally, given the extensiveness of the research area, open issues and challenges are presented to spur future investigations, in which the involvement of edge cache, big data mining, social-aware device-to-device, cognitive radio, software defined network, and physical layer security for C-RANs are discussed, and the progress of testbed development and trial test are introduced as well.
In this article, we overview intelligent reflecting surface (IRS)-empowered wireless communication systems. We first present the fundamentals of IRS-assisted wireless transmission. On this basis, we explore the integration of IRS with various advance
Rate-splitting multiple access (RSMA) has been recognized as a promising physical layer strategy for 6G. Motivated by ever increasing popularity of cache-enabled content delivery in wireless communications, this paper proposes an innovative multigrou
In cloud radio access networks (C-RANs), the baseband units and radio units of base stations are separated, which requires high-capacity fronthaul links connecting both parts. In this paper, we consider the delay-aware fronthaul allocation problem fo
Among the light elements created in the Big Bang, deuterium is one of the most difficult to detect but is also the one whose abundance depends most sensitively on the density of baryons. Thus, although we still have only a few positive identification
Channel matrix sparsification is considered as a promising approach to reduce the progressing complexity in large-scale cloud-radio access networks (C-RANs) based on ideal channel condition assumption. In this paper, the research of channel sparsific