ﻻ يوجد ملخص باللغة العربية
We present basic statistics for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) during its first year-and-a-half of operations, spanning 2013 and 2014. We also present the same information for all other bright ($m_Vleq17$), spectroscopically confirmed supernovae discovered from 2014 May 1 through the end of 2014, providing a comparison to the ASAS-SN sample starting from the point where ASAS-SN became operational in both hemispheres. In addition, we present collected redshifts and near-UV through IR magnitudes, where available, for all host galaxies of the bright supernovae in both samples. This work represents a comprehensive catalog of bright supernovae and their hosts from multiple professional and amateur sources, allowing for population studies that were not previously possible because the all-sky emphasis of ASAS-SN redresses many previously existing biases. In particular, ASAS-SN systematically finds bright supernovae closer to the centers of host galaxies than either other professional surveys or amateurs, a remarkable result given ASAS-SNs poorer angular resolution. This is the first of a series of yearly papers on bright supernovae and their hosts that will be released by the ASAS-SN team.
In this catalog we compile information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) as well as all other bright ($m_{peak}leq17$), spectroscopically confirmed supernovae found in 2017, totaling 308 supernovae
This manuscript presents information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) during 2015, its second full year of operations. The same information is presented for bright ($m_Vleq17$), spectroscopically
This catalog summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright ($m_{peak}leq17$), spectroscopically confirmed supernovae discovered in 2016. We then gather the near-IR t
We report the discovery of 3 new Double Periodic Variables based on the analysis of ASAS-SN light curves: GSD J11630570-510306, V593 Sco and TYC 6939-678-1. These systems have orbital periods between 10 and 20 days and long cycles between 300 and 600 days.
We analyzed the light curves of 1376 early-to-late, nearby M dwarfs to search for white-light flares using photometry from the All-Sky Automated Survey for Supernovae (ASAS-SN). We identified 480 M dwarfs with at least one potential flare employing a