ترغب بنشر مسار تعليمي؟ اضغط هنا

On-chip storage of broadband photonic qubits in a cavity-protected rare-earth ensemble

93   0   0.0 ( 0 )
 نشر من قبل Tian Zhong
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ensembles of solid-state optical emitters enable broadband quantum storage and transduction of photonic qubits, with applications in high-rate optical quantum networks for secure communications, global time-keeping, and interconnecting future quantum computers. To realize coherent quantum information transfer using ensembles, spin rephasing techniques are currently used to mitigate fast decoherence resulting from inhomogeneous broadening. Here we use a dense ensemble of neodymium rare-earth ions strongly coupled to a nanophotonic resonator to demonstrate that decoherence of a single photon excitation is near-completely suppressed via cavity protection- a new technique for accessing the decoherence-free subspace of collective coupling. The protected Rabi oscillations between the cavity field and the atomic superradiant state thereby enable ultra-fast transfer of photonic frequency qubits (~50 GHz bandwidth) into the ions, followed by retrieval with 98.7% fidelity. By coupling the superradiant excitation to other long-lived rare-earth spin states, this technology will enable broadband, always-ready quantum memories and fast optical-to-microwave transducers.



قيم البحث

اقرأ أيضاً

General purpose quantum computers can, in principle, entangle a number of noisy physical qubits to realise composite qubits protected against errors. Architectures for measurement-based quantum computing intrinsically support error-protected qubits a nd are the most viable approach for constructing an all-photonic quantum computer. Here we propose and demonstrate an integrated silicon photonic architecture that both entangles multiple photons, and encodes multiple physical qubits on individual photons, to produce error-protected qubits. We realise reconfigurable graph states to compare several schemes with and without error-correction encodings and implement a range of quantum information processing tasks. We observe a success rate increase from 62.5% to 95.8% when running a phase estimation algorithm without and with error protection, respectively. Finally, we realise hypergraph states, which are a generalised class of resource states that offer protection against correlated errors. Our results show how quantum error-correction encodings can be implemented with resource-efficient photonic architectures to improve the performance of quantum algorithms.
Non-destructive detection of photonic qubits will enable important applications in photonic quantum information processing and quantum communications. Here, we present an approach based on a solid-state cavity containing an ensemble of rare-earth ion s. First a probe pulse containing many photons is stored in the ensemble. Then a single signal photon, which represents a time-bin qubit, imprints a phase on the ensemble that is due to the AC Stark effect. This phase does not depend on the exact timing of the signal photon, which makes the detection insensitive to the time-bin qubit state. Then the probe pulse is retrieved and its phase is detected via homodyne detection. We show that the cavity leads to a dependence of the imprinted phase on the {it probe} photon number, which leads to a spreading of the probe phase, in contrast to the simple shift that occurs in the absence of a cavity. However, we show that this scenario still allows non-destructive detection of the signal. We discuss potential implementations of the scheme, showing that high success probability and low loss should be simultaneously achievable.
We present cavity QED experiments with an Er:YSO crystal magnetically coupled to a 3D cylindrical sapphire loaded copper resonator. Such waveguide cavities are promising for the realization of a superconducting quantum processor. Here, we demonstrate the coherent integration of a rare-earth spin ensemble with the 3D architecture. The collective coupling strength of the Er$^{3+}$ spins to the 3D cavity is 21 MHz. The cylindrical sapphire loaded resonator allowed us to explore the anisotropic collective coupling between the rare-earth doped crystal and the cavity. This work shows the potential of spin doped solids in 3D quantum circuits for application as microwave quantum memories as well as for prospective microwave to optical interfaces.
Interfacing between various elements of a computer - from memory to processors to long range communication - will be as critical for quantum computers as it is for classical computers today. Paramagnetic rare earth doped crystals, such as Nd$^{3+}$:Y $_2$SiO$_5$ (YSO), are excellent candidates for such a quantum interface: they are known to exhibit long optical coherence lifetimes (for communication via optical photons), possess a nuclear spin (memory) and have in addition an electron spin that can offer hybrid coupling with superconducting qubits (processing). Here we study two of these three elements, demonstrating coherent storage and retrieval between electron and $^{145}$Nd nuclear spin states in Nd$^{3+}$:YSO. We find nuclear spin coherence times can reach 9 ms at $approx 5$ K, about two orders of magnitude longer than the electron spin coherence, while quantum state and process tomography of the storage/retrieval operation reveal an average state fidelity of 0.86. The times and fidelities are expected to further improve at lower temperatures and with more homogeneous radio-frequency excitation.
272 - P. Siyushev , K. Xia , R. Reuter 2014
Rare-earth-doped crystals are excellent hardware for quantum storage of optical information. Additional functionality of these materials is added by their waveguiding properties allowing for on-chip photonic networks. However, detection and coherent properties of rare-earth single-spin qubits have not been demonstrated so far. Here, we present experimental results on high-fidelity optical initialization, effcient coherent manipulation, and optical readout of a single electron spin of Ce$^{3+}$ ion in a YAG crystal. Under dynamic decoupling, spin coherence lifetime reaches $T_2$=2 ms and is almost limited by the measured spin-lattice relaxation time $T_1$=3.8 ms. Strong hyperfine coupling to aluminium nuclear spins suggests that cerium electron spins can be exploited as an interface between photons and long-lived nuclear spin memory. Combined with high brightness of Ce$^{3+}$ emission and a possibility of creating photonic circuits out of the host material, this makes cerium spins an interesting option for integrated quantum photonics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا