ﻻ يوجد ملخص باللغة العربية
Deviations of the observed cosmic microwave background (CMB) from the standard model, known as anomalies, are obviously highly significant and deserve to be pursued more aggressively in order to discover the physical phenomena underlying them. Through intensive investigation we have discovered that there are equally surprising features in the digits of the number $pi$, and moreover there is a remarkable correspondence between each type of peculiarity in the digits of $pi$ and the anomalies in the CMB. Putting aside the unreasonable possibility that these are just the sort of flukes that appear when one looks hard enough, the only conceivable conclusion is that, however the CMB anomalies were created, a similar process imprinted patterns in the digits of $pi$.
We present results from a total of 459 repeated 3.1 GHz radio continuum observations (of which 379 were used in a search for transient sources) of the ELAIS-N1, Coma, Lockman Hole, and NOAO Deep Wide Field Survey fields as part of the Pi GHz Sky Surv
We present a numerical code to simulate maps of Galactic emission in intensity and polarization at microwave frequencies, aiding in the design of Cosmic Microwave Background experiments. This Python code builds on existing efforts to simulate the sky
An important, and potentially detectable, signature of a non-trivial topology for the universe is the presence of so called circles-in-the-sky in the cosmic microwave background (CMB). Recent searches, confined to antipodal and nearly antipodal circl
We investigate the scientific impact of the Wide Field X-ray Telescope mission. We present simulated images and spectra of X-ray sources as observed from the three surveys planned for the nominal 5-year WFXT lifetime. The goal of these simulations is
An apparatus to search for optical flashes in the sky is described. It has been optimized for gamma ray bursts (GRB) optical counterparts. It consists of 2x16 cameras covering all the sky. The sky is monitored continuously and the data are analysed o