ﻻ يوجد ملخص باللغة العربية
Given a graph $G=(V,E)$ and a positive integer $tgeq2$, the task in the vertex cover $P_t$ ($VCP_t$) problem is to find a minimum subset of vertices $Fsubseteq V$ such that every path of order $t$ in $G$ contains at least one vertex from $F$. The $VCP_t$ problem is NP-complete for any integer $tgeq2$ and has many applications in real world. Recently, the authors presented a dynamic programming algorithm running in time $4^pcdot n^{O(1)}$ for the $VCP_3$ problem on $n$-vertex graphs with treewidth $p$. In this paper, we propose an improvement of it and improved the time-complexity to $3^pcdot n^{O(1)}$. The connected vertex cover $P_3$ ($CVCP_3$) problem is the connected variation of the $VCP_3$ problem where $G[F]$ is required to be connected. Using the Cut&Count technique, we give a randomized algorithm with runtime $4^pcdot n^{O(1)}$ for the $CVCP_3$ problem on $n$-vertex graphs with treewidth $p$.
We focus on counting the number of labeled graphs on $n$ vertices and treewidth at most $k$ (or equivalently, the number of labeled partial $k$-trees), which we denote by $T_{n,k}$. So far, only the particular cases $T_{n,1}$ and $T_{n,2}$ had been s
The maximum/minimum bisection problems are, given an edge-weighted graph, to find a bipartition of the vertex set into two sets whose sizes differ by at most one, such that the total weight of edges between the two sets is maximized/minimized. Althou
After the number of vertices, Vertex Cover is the largest of the classical graph parameters and has more and more frequently been used as a separate parameter in parameterized problems, including problems that are not directly related to the Vertex C
A (vertex) $ell$-ranking is a labelling $varphi:V(G)tomathbb{N}$ of the vertices of a graph $G$ with integer colours so that for any path $u_0,ldots,u_p$ of length at most $ell$, $varphi(u_0) eqvarphi(u_p)$ or $varphi(u_0)<max{varphi(u_0),ldots,varph
We initiate the study of coresets for clustering in graph metrics, i.e., the shortest-path metric of edge-weighted graphs. Such clustering problems are essential to data analysis and used for example in road networks and data visualization. A coreset