ﻻ يوجد ملخص باللغة العربية
The Nitrogen-Vacancy (NV) center in diamond has attractive properties for a number of quantum technologies that rely on the spin angular momentum of the electron and the nuclei adjacent to the center. The nucleus with the strongest interaction is the $^{13}$C nuclear spin of the first shell. Using this degree of freedom effectively hinges on precise data on the hyperfine interaction between the electronic and the nuclear spin. Here, we present detailed experimental data on this interaction, together with an analysis that yields all parameters of the hyperfine tensor, as well as its orientation with respect to the atomic structure of the center.
Precise characterization of a hyperfine interaction is a prerequisite for high fidelity manipulations of electron and nuclear spins belonging to a hybrid qubit register in diamond. Here, we demonstrate a novel scheme for determining a hyperfine inter
We propose a protocol that achieves arbitrary N-qubit interactions between nuclear spins and that can measure directly nuclear many-body correlators by appropriately making the nuclear spins interact with a nitrogen vacancy (NV) center electron spin.
One of the most remarkable properties of the nitrogen-vacancy (NV) center in diamond is that optical illumination initializes its electronic spin almost completely, a feature that can be exploited to polarize other spin species in their proximity. He
A rotation sensor is one of the key elements of inertial navigation systems and compliments most cellphone sensor sets used for various applications. Currently, inexpensive and efficient solutions are mechanoelectronic devices, which nevertheless lac
Recently, magnetic field sensors based on an electron spin of a nitrogen vacancy (NV) center in diamond have been studied both from an experimental and theoretical point of view. This system provides a nanoscale magnetometer, and it is possible to de