ﻻ يوجد ملخص باللغة العربية
X-ray variability is very common in active galactic nuclei (AGN), but these variations may not occur similarly in different families of AGN. We aim to disentangle the structure of low ionization nuclear emission line regions (LINERs) compared to Seyfert 2s by the study of their spectral properties and X-ray variations. We assembled the X-ray spectral parameters and variability patterns, which were obtained from simultaneous spectral fittings. Major differences are observed in the X-ray luminosities, and the Eddington ratios, which are higher in Seyfert 2s. Short-term X-ray variations were not detected, while long-term changes are common in LINERs and Seyfert 2s. Compton-thick sources generally do not show variations, most probably because the AGN is not accesible in the 0.5--10 keV energy band. The changes are mostly related with variations in the nuclear continuum, but other patterns of variability show that variations in the absorbers and at soft energies can be present in a few cases. We conclude that the X-ray variations may occur similarly in LINERs and Seyfert 2s, i.e., they are related to the nuclear continuum, although they might have different accretion mechanisms. Variations at UV frequencies are detected in LINER nuclei but not in Seyfert 2s. This is suggestive of at least some LINERs having an unobstructed view of the inner disc where the UV emission might take place, being UV variations common in them. This result might be compatible with the disappeareance of the torus and/or the broad line region in at least some LINERs.
In this work, which is a continuation of Castello-Mor et al. (2016), we present new X-ray and infrared (IR) data for a sample of active galactic nuclei (AGN) covering a wide range in Eddington ratio over a small luminosity range. In particular, we ri
We present the first result of a programme to search for large flux variations in the X-ray sources of the XMM Serendipitous Survey compared to previous ROSAT observations. An increase in X-ray flux by a factor >10 was discovered from the nucleus of
(Abridged) Based on UV to X-ray and radio to UV flux ratios, some argue that low ionization emission line regions (LINERs) and low luminosity AGN (LLAGN) are a scaled-down version of their more luminous predecessors Seyfert galaxies. Others, based on
Seyfert 1.8/1.9 are sources showing weak broad H-alpha components in their optical spectra. We aim at testing whether Seyfert 1.8/1.9 have similar properties at UV and X-ray wavelengths to Seyfert 2. We use the 15 Seyfert 1.8/1.9 in the Veron Cetty a
We investigate the photoionised X-ray emission line regions (ELRs) within the Seyfert 2 galaxy NGC 1068, to determine if there are any characteristic changes between observations taken fourteen years apart. We compare XMM-Newton observations collecte