ترغب بنشر مسار تعليمي؟ اضغط هنا

Scalable SUM-Shrinkage Schemes for Distributed Monitoring Large-Scale Data Streams

98   0   0.0 ( 0 )
 نشر من قبل Kun Liu
 تاريخ النشر 2016
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article, motivated by biosurveillance and censoring sensor networks, we investigate the problem of distributed monitoring large-scale data streams where an undesired event may occur at some unknown time and affect only a few unknown data streams. We propose to develop scalable global monitoring schemes by parallel running local detection procedures and by combining these local procedures together to make a global decision based on SUM-shrinkage techniques. Our approach is illustrated in two concrete examples: one is the nonhomogeneous case when the pre-change and post-change local distributions are given, and the other is the homogeneous case of monitoring a large number of independent $N(0,1)$ data streams where the means of some data streams might shift to unknown positive or negative values. Numerical simulation studies demonstrate the usefulness of the proposed schemes.

قيم البحث

اقرأ أيضاً

Robust real-time monitoring of high-dimensional data streams has many important real-world applications such as industrial quality control, signal detection, biosurveillance, but unfortunately it is highly non-trivial to develop efficient schemes due to two challenges: (1) the unknown sparse number or subset of affected data streams and (2) the uncertainty of model specification for high-dimensional data. In this article, motivated by the detection of smaller persistent changes in the presence of larger transient outliers, we develop a family of efficient real-time robust detection schemes for high-dimensional data streams through monitoring feature spaces such as PCA or wavelet coefficients when the feature coefficients are from Tukey-Hubers gross error models with outliers. We propose to construct a new local detection statistic for each feature called $L_{alpha}$-CUSUM statistic that can reduce the effect of outliers by using the Box-Cox transformation of the likelihood function, and then raise a global alarm based upon the sum of the soft-thresholding transformation of these local $L_{alpha}$-CUSUM statistics so that to filter out unaffected features. In addition, we propose a new concept called false alarm breakdown point to measure the robustness of online monitoring schemes, and also characterize the breakdown point of our proposed schemes. Asymptotic analysis, extensive numerical simulations and case study of nonlinear profile monitoring are conducted to illustrate the robustness and usefulness of our proposed schemes.
Standardization has been a widely adopted practice in multiple testing, for it takes into account the variability in sampling and makes the test statistics comparable across different study units. However, despite conventional wisdom to the contrary, we show that there can be a significant loss in information from basing hypothesis tests on standardized statistics rather than the full data. We develop a new class of heteroscedasticity--adjusted ranking and thresholding (HART) rules that aim to improve existing methods by simultaneously exploiting commonalities and adjusting heterogeneities among the study units. The main idea of HART is to bypass standardization by directly incorporating both the summary statistic and its variance into the testing procedure. A key message is that the variance structure of the alternative distribution, which is subsumed under standardized statistics, is highly informative and can be exploited to achieve higher power. The proposed HART procedure is shown to be asymptotically valid and optimal for false discovery rate (FDR) control. Our simulation results demonstrate that HART achieves substantial power gain over existing methods at the same FDR level. We illustrate the implementation through a microarray analysis of myeloma.
124 - Kun Zhou , Ker-Chau Li , 2019
The issue of honesty in constructing confidence sets arises in nonparametric regression. While optimal rate in nonparametric estimation can be achieved and utilized to construct sharp confidence sets, severe degradation of confidence level often happ ens after estimating the degree of smoothness. Similarly, for high-dimensional regression, oracle inequalities for sparse estimators could be utilized to construct sharp confidence sets. Yet the degree of sparsity itself is unknown and needs to be estimated, causing the honesty problem. To resolve this issue, we develop a novel method to construct honest confidence sets for sparse high-dimensional linear regression. The key idea in our construction is to separate signals into a strong and a weak group, and then construct confidence sets for each group separately. This is achieved by a projection and shrinkage approach, the latter implemented via Stein estimation and the associated Stein unbiased risk estimate. Our confidence set is honest over the full parameter space without any sparsity constraints, while its diameter adapts to the optimal rate of $n^{-1/4}$ when the true parameter is indeed sparse. Through extensive numerical comparisons, we demonstrate that our method outperforms other competitors with big margins for finite samples, including oracle methods built upon the true sparsity of the underlying model.
The large-scale data stream problem refers to high-speed information flow which cannot be processed in scalable manner under a traditional computing platform. This problem also imposes expensive labelling cost making the deployment of fully supervise d algorithms unfeasible. On the other hand, the problem of semi-supervised large-scale data streams is little explored in the literature because most works are designed in the traditional single-node computing environments while also being fully supervised approaches. This paper offers Weakly Supervised Scalable Teacher Forcing Network (WeScatterNet) to cope with the scarcity of labelled samples and the large-scale data streams simultaneously. WeScatterNet is crafted under distributed computing platform of Apache Spark with a data-free model fusion strategy for model compression after parallel computing stage. It features an open network structure to address the global and local drift problems while integrating a data augmentation, annotation and auto-correction ($DA^3$) method for handling partially labelled data streams. The performance of WeScatterNet is numerically evaluated in the six large-scale data stream problems with only $25%$ label proportions. It shows highly competitive performance even if compared with fully supervised learners with $100%$ label proportions.
We consider the problem of simultaneous estimation of a sequence of dependent parameters that are generated from a hidden Markov model. Based on observing a noise contaminated vector of observations from such a sequence model, we consider simultaneou s estimation of all the parameters irrespective of their hidden states under square error loss. We study the roles of statistical shrinkage for improved estimation of these dependent parameters. Being completely agnostic on the distributional properties of the unknown underlying Hidden Markov model, we develop a novel non-parametric shrinkage algorithm. Our proposed method elegantly combines textit{Tweedie}-based non-parametric shrinkage ideas with efficient estimation of the hidden states under Markovian dependence. Based on extensive numerical experiments, we establish superior performance our our proposed algorithm compared to non-shrinkage based state-of-the-art parametric as well as non-parametric algorithms used in hidden Markov models. We provide decision theoretic properties of our methodology and exhibit its enhanced efficacy over popular shrinkage methods built under independence. We demonstrate the application of our methodology on real-world datasets for analyzing of temporally dependent social and economic indicators such as search trends and unemployment rates as well as estimating spatially dependent Copy Number Variations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا